mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 20:35:01 +08:00
473 lines
18 KiB
Python
473 lines
18 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from collections.abc import Iterable
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size)
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader, maybe_remap_kv_scale_name)
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsPP
|
|
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers,
|
|
maybe_prefix)
|
|
|
|
|
|
class DbrxRouter(nn.Module):
|
|
"""A Router implementation for DBRX that returns logits for each expert
|
|
per token.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.num_total_experts = config.ffn_config.moe_num_experts
|
|
self.d_model = config.d_model
|
|
self.layer = ReplicatedLinear(
|
|
self.d_model,
|
|
self.num_total_experts,
|
|
bias=False,
|
|
params_dtype=params_dtype,
|
|
quant_config=None,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
router_logits, _ = self.layer(hidden_states)
|
|
return router_logits
|
|
|
|
|
|
class DbrxExperts(FusedMoE):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__(
|
|
num_experts=config.ffn_config.moe_num_experts,
|
|
top_k=config.ffn_config.moe_top_k,
|
|
hidden_size=config.d_model,
|
|
intermediate_size=config.ffn_config.ffn_hidden_size,
|
|
params_dtype=params_dtype,
|
|
reduce_results=True,
|
|
renormalize=True,
|
|
quant_config=quant_config,
|
|
tp_size=get_tensor_model_parallel_world_size(),
|
|
prefix=prefix,
|
|
)
|
|
self.config = config
|
|
self.d_model = config.d_model
|
|
self.intermediate_size = (self.config.ffn_config.ffn_hidden_size //
|
|
self.tp_size)
|
|
|
|
# Define custom weight loader for dbrx model
|
|
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
|
|
weight_name: str, param_name: str):
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
param_data = param.data
|
|
shard_size = self.intermediate_size
|
|
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
|
|
# DBRX uses GLU for each experts.
|
|
# GLU has 3 linear layers: w1, v1 and w2.
|
|
if weight_name.endswith("w1"):
|
|
if param_name.endswith("weight"):
|
|
loaded_weight = torch.reshape(
|
|
loaded_weight,
|
|
[-1, self.intermediate_size * self.tp_size, self.d_model],
|
|
)
|
|
param_data[:, 0:shard_size, :] = loaded_weight[:, shard, :]
|
|
elif param_name.endswith("weight_scale"):
|
|
param_data[:, 0] = loaded_weight
|
|
else:
|
|
param_data = loaded_weight
|
|
if weight_name.endswith("v1"):
|
|
if param_name.endswith("weight"):
|
|
loaded_weight = torch.reshape(
|
|
loaded_weight,
|
|
[-1, self.intermediate_size * self.tp_size, self.d_model],
|
|
)
|
|
param_data[:, shard_size:2 *
|
|
shard_size, :] = loaded_weight[:, shard, :]
|
|
elif param_name.endswith("weight_scale"):
|
|
param_data[:, 1] = loaded_weight
|
|
else:
|
|
param_data[:] = loaded_weight
|
|
if weight_name.endswith("w2"):
|
|
if param_name.endswith("weight"):
|
|
loaded_weight = torch.reshape(
|
|
loaded_weight,
|
|
[-1, self.intermediate_size * self.tp_size, self.d_model],
|
|
).transpose(1, 2)
|
|
param_data[:] = loaded_weight[:, :, shard]
|
|
else:
|
|
param_data[:] = loaded_weight
|
|
|
|
|
|
class DbrxMoE(nn.Module):
|
|
"""A tensor-parallel MoE implementation for DBRX.
|
|
|
|
Each expert's weights are sharded across all ranks and a fused MoE
|
|
kernel is used for the forward pass, and finally we reduce the outputs
|
|
across ranks.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.d_model = config.d_model
|
|
if params_dtype is None:
|
|
params_dtype = torch.get_default_dtype()
|
|
self.params_dtype = params_dtype
|
|
|
|
self.router = DbrxRouter(config, self.params_dtype)
|
|
|
|
self.experts = DbrxExperts(config=config,
|
|
quant_config=quant_config,
|
|
params_dtype=self.params_dtype,
|
|
prefix=f"{prefix}.experts")
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
orig_shape = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, self.d_model)
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits = self.router(hidden_states)
|
|
final_hidden_states = self.experts(hidden_states, router_logits)
|
|
return final_hidden_states.view(orig_shape)
|
|
|
|
|
|
class DbrxAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.d_model = config.d_model
|
|
self.total_num_heads = config.n_heads
|
|
self.head_dim = self.d_model // self.total_num_heads
|
|
self.total_num_kv_heads = config.attn_config.kv_n_heads
|
|
self.clip_qkv = config.attn_config.clip_qkv
|
|
self.rope_theta = config.attn_config.rope_theta
|
|
self.max_position = config.max_seq_len
|
|
|
|
# pylint: disable=invalid-name
|
|
self.Wqkv = QKVParallelLinear(
|
|
self.d_model,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
)
|
|
self.out_proj = RowParallelLinear(
|
|
self.d_model,
|
|
self.d_model,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position,
|
|
base=int(self.rope_theta),
|
|
is_neox_style=True,
|
|
)
|
|
|
|
tp_world_size = get_tensor_model_parallel_world_size()
|
|
self.tp_size = tp_world_size
|
|
assert self.total_num_heads % tp_world_size == 0
|
|
self.num_heads = self.total_num_heads // tp_world_size
|
|
if self.total_num_kv_heads >= tp_world_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_world_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_world_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.Wqkv(hidden_states)
|
|
if self.clip_qkv is not None:
|
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(position_ids, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
hidden_states, _ = self.out_proj(attn_output)
|
|
return hidden_states
|
|
|
|
|
|
class DbrxFusedNormAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.d_model = config.d_model
|
|
self.attn = DbrxAttention(config,
|
|
cache_config,
|
|
quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
self.norm_1 = nn.LayerNorm(self.d_model)
|
|
self.norm_2 = nn.LayerNorm(self.d_model)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
residual = hidden_states
|
|
hidden_states = self.norm_1(hidden_states)
|
|
x = self.attn(
|
|
position_ids=position_ids,
|
|
hidden_states=hidden_states,
|
|
)
|
|
hidden_states = residual + x
|
|
residual = hidden_states
|
|
hidden_states = self.norm_2(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class DbrxBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.norm_attn_norm = DbrxFusedNormAttention(
|
|
config,
|
|
cache_config,
|
|
quant_config,
|
|
prefix=f"{prefix}.norm_attn_norm")
|
|
self.ffn = DbrxMoE(config, quant_config, prefix=f"{prefix}.ffn")
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
hidden_states, residual = self.norm_attn_norm(
|
|
position_ids=position_ids,
|
|
hidden_states=hidden_states,
|
|
)
|
|
hidden_states = self.ffn(hidden_states)
|
|
hidden_states = hidden_states + residual
|
|
return hidden_states
|
|
|
|
|
|
class DbrxModel(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.quant_config = quant_config
|
|
self.wte = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.d_model,
|
|
)
|
|
self.start_layer, self.end_layer, self.blocks = make_layers(
|
|
config.n_layers,
|
|
lambda prefix: DbrxBlock(
|
|
config, cache_config, quant_config, prefix=prefix),
|
|
prefix=f"{prefix}.blocks",
|
|
)
|
|
self.norm_f = nn.LayerNorm(config.d_model, eps=1e-5)
|
|
for module in self.modules():
|
|
if hasattr(module, "bias") and isinstance(module.bias,
|
|
nn.Parameter):
|
|
# Remove the bias term in Linear and LayerNorm.
|
|
module.register_parameter("bias", None)
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(["hidden_states"],
|
|
config.d_model))
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.wte(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
else:
|
|
assert intermediate_tensors
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
for block in self.blocks[self.start_layer:self.end_layer]:
|
|
hidden_states = block(position_ids, hidden_states)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
hidden_states = self.norm_f(hidden_states)
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
expert_params_mapping = [(
|
|
"w13" if weight_name in ["w1", "v1"] else "w2",
|
|
f"mlp.{weight_name}",
|
|
) for weight_name in ["w1", "v1", "w2"]]
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: set[str] = set()
|
|
|
|
for name, loaded_weight in weights:
|
|
if (self.quant_config is not None and
|
|
(scale_name := self.quant_config.get_cache_scale(name))):
|
|
# Loading kv cache quantization scales
|
|
param = params_dict[scale_name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
|
|
loaded_weight[0])
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(scale_name)
|
|
continue
|
|
|
|
if name.endswith(("w1", "w2", "v1")):
|
|
name = name + "_weight"
|
|
for param_name, weight_name in expert_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, weight_name, name)
|
|
break
|
|
|
|
else:
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class DbrxForCausalLM(nn.Module, SupportsPP):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
if config.tie_word_embeddings:
|
|
raise ValueError(
|
|
"tie_word_embeddings is not supported for Dbrx models.")
|
|
self.quant_config = quant_config
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
self.transformer = DbrxModel(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(
|
|
prefix, "transformer"))
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.d_model,
|
|
org_num_embeddings=config.vocab_size,
|
|
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
|
|
quant_config=quant_config,
|
|
)
|
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
|
config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.transformer.make_empty_intermediate_tensors)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.transformer.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
hidden_states = self.transformer(input_ids, positions,
|
|
intermediate_tensors, inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|