mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 05:25:02 +08:00
261 lines
9.8 KiB
Python
261 lines
9.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
# Required to register custom ops.
|
|
import torch_xla.experimental.custom_kernel # noqa: F401
|
|
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionLayer, AttentionType)
|
|
from vllm.attention.backends.utils import CommonAttentionState
|
|
from vllm.config import VllmConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import cdiv, next_power_of_2
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# TPU requires the head size to be a multiple of 128.
|
|
TPU_HEAD_SIZE_ALIGNMENT = 128
|
|
|
|
|
|
class PallasAttentionBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "PALLAS_VLLM_V1"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> type["PallasAttentionBackendImpl"]:
|
|
return PallasAttentionBackendImpl
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> type["PallasMetadata"]:
|
|
return PallasMetadata
|
|
|
|
@staticmethod
|
|
def get_state_cls() -> type["CommonAttentionState"]:
|
|
return CommonAttentionState
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> tuple[int, ...]:
|
|
padded_head_size = cdiv(
|
|
head_size, TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
|
return (num_blocks, block_size, num_kv_heads * 2, padded_head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: torch.Tensor,
|
|
) -> None:
|
|
raise RuntimeError("swap_blocks is not used for the TPU backend.")
|
|
|
|
# In recent TPU generations, up to v6e, the SMEM size is 1MB. The
|
|
# block_tables within the PallasMetadata constitute almost the entire SMEM
|
|
# requirement. Its size is max_num_seqs * num_page_per_seq * 4 (Int). Here
|
|
# we simply make sure that the size is smaller than half of SMEM capacity.
|
|
@staticmethod
|
|
def get_min_page_size(vllm_config: VllmConfig) -> int:
|
|
max_num_page_per_req = (1024 * 1024 // 2 //
|
|
vllm_config.scheduler_config.max_num_seqs // 4)
|
|
min_page_size = cdiv(vllm_config.model_config.max_model_len,
|
|
max_num_page_per_req)
|
|
min_page_size = 1 << (min_page_size - 1).bit_length()
|
|
return min_page_size
|
|
|
|
# TPU has limited SREGs (scalar registers), if page_size is too small, we
|
|
# can spill SREGs easily which leads to bad performance. The strategy we
|
|
# apply here is trying to split max-model-len to 16 pages which make the
|
|
# spill less likely. Meanwhile we make sure the page size is in [16, 256].
|
|
@staticmethod
|
|
def get_page_size(vllm_config: VllmConfig) -> int:
|
|
page_size = next_power_of_2(
|
|
vllm_config.model_config.max_model_len) // 16
|
|
if page_size <= 16:
|
|
return 16
|
|
if page_size >= 256:
|
|
return 256
|
|
return page_size
|
|
|
|
|
|
@dataclass
|
|
class PallasMetadata:
|
|
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ---------------------|
|
|
# |-- query_len ---|
|
|
|
|
# Used in the PallasAttentionBackendImpl
|
|
slot_mapping: torch.Tensor
|
|
block_tables: torch.Tensor
|
|
context_lens: torch.Tensor
|
|
query_start_loc: torch.Tensor
|
|
num_seqs: torch.Tensor
|
|
|
|
|
|
class PallasAttentionBackendImpl(AttentionImpl):
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[list[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[dict[str, Any]] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
attn_type: str = AttentionType.DECODER,
|
|
kv_sharing_target_layer_name: Optional[int] = None,
|
|
use_irope: bool = False,
|
|
) -> None:
|
|
if use_irope:
|
|
logger.warning_once(
|
|
"Using irope in Pallas is not supported yet, it will fall back "
|
|
"to global attention for long context.")
|
|
if blocksparse_params is not None:
|
|
raise ValueError("Paged attention Pallas kernel does "
|
|
"not support block-sparse attention.")
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
self.sliding_window = sliding_window
|
|
self.logits_soft_cap = logits_soft_cap
|
|
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
|
|
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
if alibi_slopes is not None:
|
|
raise NotImplementedError("Alibi slopes is not supported.")
|
|
if kv_cache_dtype != "auto":
|
|
raise NotImplementedError("FP8 KV cache dtype is not supported.")
|
|
if blocksparse_params is not None:
|
|
raise NotImplementedError("Blocksparse is not supported.")
|
|
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError("Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"PallasAttentionBackendImpl")
|
|
|
|
tpu_version = torch_xla.tpu.version()
|
|
if tpu_version < 4:
|
|
raise NotImplementedError("TPU version must be 4 or higher.")
|
|
|
|
def forward(
|
|
self,
|
|
layer: AttentionLayer,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: PallasMetadata,
|
|
output: Optional[torch.Tensor] = None,
|
|
output_scale: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with Pallas attention.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
if output_scale is not None:
|
|
raise NotImplementedError(
|
|
"fused output quantization is not yet supported"
|
|
" for PallasAttentionBackendImpl")
|
|
|
|
# For determine_available_memory case.
|
|
if kv_cache.numel() == 0:
|
|
if output is None:
|
|
output = torch.ones_like(query)
|
|
return output
|
|
|
|
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0
|
|
num_tokens, hidden_size = query.shape
|
|
query = query.view(num_tokens, self.num_heads, self.head_size)
|
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
|
value = value.view(-1, self.num_kv_heads, self.head_size)
|
|
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
|
|
padded_head_size = cdiv(
|
|
self.head_size,
|
|
TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
|
query = torch.nn.functional.pad(
|
|
query, (0, padded_head_size - self.head_size), value=0.0)
|
|
key = torch.nn.functional.pad(
|
|
key, (0, padded_head_size - self.head_size), value=0.0)
|
|
value = torch.nn.functional.pad(
|
|
value, (0, padded_head_size - self.head_size), value=0.0)
|
|
|
|
if self.kv_sharing_target_layer_name is None and kv_cache.numel() > 0:
|
|
# Write input keys and values to the KV cache.
|
|
# Skip this if sharing KV cache with an earlier attention layer.
|
|
slot_mapping = attn_metadata.slot_mapping
|
|
write_to_kv_cache(key, value, kv_cache, slot_mapping)
|
|
|
|
output = torch.ops.xla.ragged_paged_attention(
|
|
query,
|
|
kv_cache,
|
|
attn_metadata.context_lens,
|
|
attn_metadata.block_tables,
|
|
attn_metadata.query_start_loc,
|
|
attn_metadata.num_seqs,
|
|
# By default, the system utilizes optimized block size and
|
|
# vmem_limit_bytes parameters from the kernel repository. However,
|
|
# these can be manually adjusted for debugging if necessary.
|
|
num_kv_pages_per_block=None,
|
|
num_queries_per_block=None,
|
|
vmem_limit_bytes=None,
|
|
use_kernel=True,
|
|
sm_scale=self.scale,
|
|
sliding_window=self.sliding_window,
|
|
soft_cap=self.logits_soft_cap,
|
|
)
|
|
|
|
if self.head_size % TPU_HEAD_SIZE_ALIGNMENT != 0:
|
|
output = output[:, :, :self.head_size]
|
|
|
|
return output.reshape(num_tokens, hidden_size)
|
|
|
|
|
|
def write_to_kv_cache(
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
slot_mapping: torch.Tensor,
|
|
) -> None:
|
|
""" Write the key and values to the KV cache.
|
|
|
|
Args:
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
|
|
|
"""
|
|
_, _, num_combined_kv_heads, head_size = kv_cache.shape
|
|
head_size = cdiv(head_size,
|
|
TPU_HEAD_SIZE_ALIGNMENT) * TPU_HEAD_SIZE_ALIGNMENT
|
|
kv = torch.cat([key, value], axis=-1).reshape(-1, num_combined_kv_heads,
|
|
head_size)
|
|
|
|
torch.ops.xla.dynamo_set_buffer_donor_(kv_cache, True)
|
|
|
|
kv_cache = kv_cache.flatten(0, 1)
|
|
kv_cache.index_copy_(0, slot_mapping, kv)
|