mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 01:05:28 +08:00
554 lines
19 KiB
Python
554 lines
19 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
from typing import Any
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import Lfm2Config
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.mamba.mamba_utils import (
|
|
MambaStateDtypeCalculator,
|
|
MambaStateShapeCalculator,
|
|
)
|
|
from vllm.model_executor.layers.mamba.short_conv import ShortConv
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
DEFAULT_VOCAB_PADDING_SIZE,
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import HasInnerState, IsHybrid, SupportsLoRA, SupportsPP, SupportsQuant
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
extract_layer_index,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
class Lfm2MLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
ff_dim: int,
|
|
multiple_of: int,
|
|
auto_adjust_ff_dim: bool,
|
|
ffn_dim_multiplier: float | None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
if auto_adjust_ff_dim:
|
|
ff_dim = int(2 * ff_dim / 3)
|
|
# custom dim factor multiplier
|
|
if ffn_dim_multiplier is not None:
|
|
ff_dim = int(ffn_dim_multiplier * ff_dim)
|
|
ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
|
|
|
|
self.w1 = MergedColumnParallelLinear(
|
|
input_size=dim,
|
|
output_sizes=[ff_dim] * 2,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.w1",
|
|
)
|
|
self.w2 = RowParallelLinear(
|
|
input_size=ff_dim,
|
|
output_size=dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.w2",
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
gate_up, _ = self.w1(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.w2(x)
|
|
return x
|
|
|
|
|
|
class Lfm2Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Lfm2Config,
|
|
layer_idx: int,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: dict[str, Any] | None = None,
|
|
max_position_embeddings: int = 8192,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.hidden_size = hidden_size
|
|
self.num_kv_heads = num_kv_heads
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = self.hidden_size // self.total_num_heads
|
|
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=self.hidden_size,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.total_num_heads,
|
|
total_num_kv_heads=self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
self.out_proj = RowParallelLinear(
|
|
input_size=self.total_num_heads * self.head_dim,
|
|
output_size=self.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.out_proj",
|
|
)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
is_neox_style=True,
|
|
)
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
self.q_layernorm = RMSNorm(self.head_dim, eps=config.norm_eps)
|
|
self.k_layernorm = RMSNorm(self.head_dim, eps=config.norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
n_tokens, _ = hidden_states.shape
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q = q.view(n_tokens, self.num_heads, self.head_dim).contiguous()
|
|
k = k.view(n_tokens, self.num_kv_heads, self.head_dim).contiguous()
|
|
q = self.q_layernorm(q)
|
|
k = self.k_layernorm(k)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
q = q.view(n_tokens, self.num_heads * self.head_dim)
|
|
k = k.view(n_tokens, self.num_kv_heads * self.head_dim)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.out_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class Lfm2AttentionDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Lfm2Config,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.prefix = prefix
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
if rope_scaling is not None and getattr(
|
|
config, "original_max_position_embeddings", None
|
|
):
|
|
rope_scaling["original_max_position_embeddings"] = (
|
|
config.original_max_position_embeddings
|
|
)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
|
|
self.self_attn = Lfm2Attention(
|
|
config=config,
|
|
layer_idx=layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
|
|
self.feed_forward = Lfm2MLP(
|
|
dim=config.block_dim,
|
|
ff_dim=config.block_ff_dim,
|
|
multiple_of=config.block_multiple_of,
|
|
auto_adjust_ff_dim=config.block_auto_adjust_ff_dim,
|
|
ffn_dim_multiplier=config.block_ffn_dim_multiplier,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.feed_forward",
|
|
)
|
|
self.operator_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.operator_norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.operator_norm(hidden_states, residual)
|
|
hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
|
|
hidden_states, residual = self.ffn_norm(hidden_states, residual)
|
|
return self.feed_forward(hidden_states), residual
|
|
|
|
|
|
class Lfm2ShortConvDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Lfm2Config,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.conv = ShortConv(
|
|
config=config,
|
|
dim=config.conv_dim,
|
|
layer_idx=layer_idx,
|
|
model_config=model_config,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.conv",
|
|
)
|
|
|
|
self.feed_forward = Lfm2MLP(
|
|
dim=config.block_dim,
|
|
ff_dim=config.block_ff_dim,
|
|
multiple_of=config.block_multiple_of,
|
|
auto_adjust_ff_dim=config.block_auto_adjust_ff_dim,
|
|
ffn_dim_multiplier=config.block_ffn_dim_multiplier,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.feed_forward",
|
|
)
|
|
self.operator_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
):
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.operator_norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.operator_norm(hidden_states, residual)
|
|
output = torch.empty_like(hidden_states)
|
|
self.conv(
|
|
hidden_states,
|
|
output,
|
|
)
|
|
hidden_states, residual = self.ffn_norm(output, residual)
|
|
hidden_states = self.feed_forward(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class Lfm2Model(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
model_config = vllm_config.model_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
|
|
self.config = config
|
|
lora_vocab = (
|
|
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
|
|
if lora_config
|
|
else 0
|
|
)
|
|
self.vocab_size = config.vocab_size + lora_vocab
|
|
self.org_vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size
|
|
)
|
|
|
|
def get_layer(prefix: str):
|
|
layer_idx = extract_layer_index(prefix)
|
|
is_attn = self.config.layer_types[layer_idx] == "full_attention"
|
|
layer_class = (
|
|
Lfm2AttentionDecoderLayer if is_attn else Lfm2ShortConvDecoderLayer
|
|
)
|
|
return layer_class(
|
|
config,
|
|
layer_idx,
|
|
model_config,
|
|
cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
)
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
|
|
)
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.embedding_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
else:
|
|
self.embedding_norm = PPMissingLayer()
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for layer in islice(self.layers, self.start_layer, self.end_layer):
|
|
hidden_states, residual = layer(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
residual=residual,
|
|
)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
hidden_states, _ = self.embedding_norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".w1", ".w1", 0),
|
|
(".w1", ".w3", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class Lfm2ForCausalLM(
|
|
nn.Module, HasInnerState, SupportsLoRA, SupportsPP, IsHybrid, SupportsQuant
|
|
):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"w1": [
|
|
"w1",
|
|
"w3",
|
|
],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
embedding_modules = {
|
|
"embed_tokens": "input_embeddings",
|
|
"lm_head": "output_embeddings",
|
|
}
|
|
embedding_padding_modules = ["lm_head"]
|
|
|
|
@classmethod
|
|
def get_mamba_state_dtype_from_config(
|
|
cls,
|
|
vllm_config: "VllmConfig",
|
|
) -> tuple[torch.dtype, ...]:
|
|
return MambaStateDtypeCalculator.short_conv_state_dtype(
|
|
vllm_config.model_config.dtype,
|
|
vllm_config.cache_config.mamba_cache_dtype,
|
|
)
|
|
|
|
@classmethod
|
|
def get_mamba_state_shape_from_config(
|
|
cls,
|
|
vllm_config: "VllmConfig",
|
|
) -> tuple[tuple[int, int]]:
|
|
"""Calculate shapes for LFM2's convolutional cache.
|
|
|
|
Args:
|
|
vllm_config: vLLM config
|
|
|
|
Returns:
|
|
Tuple containing:
|
|
- conv_state_shape: Shape for convolutional state cache
|
|
"""
|
|
parallel_config = vllm_config.parallel_config
|
|
hf_config = vllm_config.model_config.hf_config
|
|
|
|
return MambaStateShapeCalculator.short_conv_state_shape(
|
|
tp_world_size=parallel_config.tensor_parallel_size,
|
|
intermediate_size=hf_config.conv_dim,
|
|
conv_kernel=hf_config.conv_L_cache,
|
|
)
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
cache_config = vllm_config.cache_config
|
|
lora_config = vllm_config.lora_config
|
|
assert not cache_config.enable_prefix_caching, (
|
|
"Lfm2 currently does not support prefix caching"
|
|
)
|
|
|
|
super().__init__()
|
|
self.config = config
|
|
self.model = Lfm2Model(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.unpadded_vocab_size = self.config.vocab_size
|
|
if lora_config:
|
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
|
|
|
self.lm_head = ParallelLMHead(
|
|
self.unpadded_vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
padding_size=(
|
|
DEFAULT_VOCAB_PADDING_SIZE
|
|
# We need bigger padding if using lora for kernel
|
|
# compatibility
|
|
if not lora_config
|
|
else lora_config.lora_vocab_padding_size
|
|
),
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
self.logits_processor = LogitsProcessor(
|
|
self.unpadded_vocab_size, config.vocab_size
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(weights)
|