vllm/tests/kernels/moe/utils.py
Yeshwanth N 71b1c8b667
[Chore]:Extract math and argparse utilities to separate modules (#27188)
Signed-off-by: Yeshwanth Surya <yeshsurya@gmail.com>
Signed-off-by: Yeshwanth N <yeshsurya@gmail.com>
Signed-off-by: yeshsurya <yeshsurya@gmail.com>
2025-10-26 04:03:32 -07:00

513 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
import vllm._custom_ops as ops
from tests.kernels.quant_utils import per_block_cast_to_int8
from tests.kernels.quantization.nvfp4_utils import FLOAT4_E2M1_MAX, FLOAT8_E4M3_MAX
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import fused_experts, fused_topk
from vllm.model_executor.layers.fused_moe.config import FusedMoEQuantConfig
from vllm.model_executor.layers.fused_moe.fused_batched_moe import (
BatchedPrepareAndFinalize,
BatchedTritonExperts,
NaiveBatchedExperts,
)
from vllm.model_executor.layers.fused_moe.modular_kernel import FusedMoEModularKernel
from vllm.model_executor.layers.fused_moe.utils import moe_kernel_quantize_input
from vllm.utils.deep_gemm import per_block_cast_to_fp8
from vllm.utils.math_utils import round_up
def triton_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weight: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor | None = None,
w2_scale: torch.Tensor | None = None,
a1_scale: torch.Tensor | None = None,
a2_scale: torch.Tensor | None = None,
quant_dtype: torch.dtype | None = None,
per_act_token_quant=False,
block_shape: list[int] | None = None,
) -> torch.Tensor:
quant_config = FusedMoEQuantConfig.make(
quant_dtype,
per_act_token_quant=per_act_token_quant,
block_shape=block_shape,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
)
return fused_experts(a, w1, w2, topk_weight, topk_ids, quant_config=quant_config)
def batched_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weight: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor | None = None,
w2_scale: torch.Tensor | None = None,
a1_scale: torch.Tensor | None = None,
a2_scale: torch.Tensor | None = None,
quant_dtype: torch.dtype | None = None,
per_act_token_quant: bool = False,
block_shape: list[int] | None = None,
) -> torch.Tensor:
max_num_tokens = round_up(a.shape[0], 64)
quant_config = FusedMoEQuantConfig.make(
quant_dtype,
per_act_token_quant=per_act_token_quant,
block_shape=block_shape,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
)
fused_experts = FusedMoEModularKernel(
BatchedPrepareAndFinalize(
max_num_tokens, num_dispatchers=1, num_local_experts=w1.shape[0], rank=0
),
BatchedTritonExperts(
max_num_tokens=max_num_tokens,
num_dispatchers=1,
quant_config=quant_config,
),
)
return fused_experts(a, w1, w2, topk_weight, topk_ids)
def naive_batched_moe(
a: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weight: torch.Tensor,
topk_ids: torch.Tensor,
w1_scale: torch.Tensor | None = None,
w2_scale: torch.Tensor | None = None,
a1_scale: torch.Tensor | None = None,
a2_scale: torch.Tensor | None = None,
quant_dtype: torch.dtype | None = None,
per_act_token_quant: bool = False,
block_shape: list[int] | None = None,
) -> torch.Tensor:
max_num_tokens = round_up(a.shape[0], 64)
quant_config = FusedMoEQuantConfig.make(
quant_dtype,
per_act_token_quant=per_act_token_quant,
block_shape=block_shape,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
)
fused_experts = FusedMoEModularKernel(
BatchedPrepareAndFinalize(
max_num_tokens, num_dispatchers=1, num_local_experts=w1.shape[0], rank=0
),
NaiveBatchedExperts(
max_num_tokens=max_num_tokens,
num_dispatchers=1,
quant_config=quant_config,
),
)
return fused_experts(a, w1, w2, topk_weight, topk_ids)
def chunk_scales(
scales: torch.Tensor | None, start: int, end: int
) -> torch.Tensor | None:
if scales is not None:
if scales.numel() == 1:
return scales
else:
return scales[start:end]
return None
def make_quantized_test_activations(
E: int,
m: int,
k: int,
in_dtype: torch.dtype,
quant_dtype: torch.dtype | None = None,
block_shape: list[int] | None = None,
per_act_token_quant: bool = False,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None]:
a = torch.randn((E, m, k), device="cuda", dtype=in_dtype) / 10
a_q = a
a_scale = None
if quant_dtype is not None:
assert quant_dtype == torch.float8_e4m3fn or quant_dtype == torch.int8, (
"only fp8/int8 supported"
)
a_q = torch.zeros_like(a, dtype=quant_dtype)
a_scale_l = [None] * E
for e in range(E):
a_q[e], a_scale_l[e] = moe_kernel_quantize_input(
a[e], None, quant_dtype, per_act_token_quant, block_shape
)
a_scale = torch.stack(a_scale_l)
if not per_act_token_quant and block_shape is None:
a_scale = a_scale.view(E, 1, 1)
return a, a_q, a_scale
def moe_quantize_weights(
w: torch.Tensor,
w_s: torch.Tensor | None,
quant_dtype: torch.dtype | str | None,
per_token_quant: bool,
block_shape: list[int] | None,
) -> tuple[torch.Tensor, torch.Tensor | None, torch.Tensor | None]:
assert (
quant_dtype == torch.float8_e4m3fn
or quant_dtype == torch.int8
or quant_dtype == "nvfp4"
), "only fp8/int8/nvfp4 supported"
w_gs = None
if block_shape is not None:
assert not per_token_quant
if quant_dtype == torch.int8:
w, w_s = per_block_cast_to_int8(w, block_shape)
elif quant_dtype == torch.float8_e4m3fn:
w, w_s = per_block_cast_to_fp8(w, block_shape)
elif quant_dtype == "nvfp4":
raise RuntimeError("blocked quantization not supported for nvfp4")
else:
raise RuntimeError(f"Unsupported quant type {quant_dtype}")
else:
if quant_dtype == torch.int8:
w, w_s = ops.scaled_int8_quant(
w, w_s, use_per_token_if_dynamic=per_token_quant
)
elif quant_dtype == torch.float8_e4m3fn:
w, w_s = ops.scaled_fp8_quant(
w, w_s, use_per_token_if_dynamic=per_token_quant
)
elif quant_dtype == "nvfp4":
assert not per_token_quant
w_amax = torch.abs(w).max().to(torch.float32)
w_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w_amax
w, w_s = ops.scaled_fp4_quant(w, w_gs)
else:
raise RuntimeError(f"Unsupported quant type {quant_dtype}")
return w, w_s, w_gs
def make_test_weight(
e: int,
rows: int,
cols: int,
in_dtype: torch.dtype = torch.bfloat16,
quant_dtype: torch.dtype | str | None = None,
block_shape: list[int] | None = None,
per_out_ch_quant: bool = False,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None, torch.Tensor | None]:
w_16 = torch.randn((e, rows, cols), device="cuda", dtype=in_dtype) / 15
w_gs = None
if quant_dtype is not None:
w_l = [None] * e
w_s_l = [None] * e
w_gs_l = [None] * e
for idx in range(e):
w_l[idx], w_s_l[idx], w_gs_l[idx] = moe_quantize_weights(
w_16[idx], None, quant_dtype, per_out_ch_quant, block_shape
)
w = torch.stack(w_l)
w_s = torch.stack(w_s_l)
if e > 0 and w_gs_l[0] is not None:
w_gs = torch.stack(w_gs_l)
if w_s.ndim == 2:
assert w_s.shape[-1] == 1
w_s = w_s.view(-1, 1, 1)
if block_shape is not None:
block_n, block_k = block_shape
n_tiles = (rows + block_n - 1) // block_n
k_tiles = (cols + block_k - 1) // block_k
assert w_s.shape == (e, n_tiles, k_tiles)
else:
w = w_16
w_s = None
w_gs = None
return w_16, w, w_s, w_gs
def make_test_weights(
e: int,
n: int,
k: int,
in_dtype: torch.dtype = torch.bfloat16,
quant_dtype: torch.dtype | str | None = None,
block_shape: list[int] | None = None,
per_out_ch_quant: bool = False,
) -> tuple[
tuple[torch.Tensor, torch.Tensor, torch.Tensor | None, torch.Tensor | None],
tuple[torch.Tensor, torch.Tensor, torch.Tensor | None, torch.Tensor | None],
]:
return (
make_test_weight(
e, 2 * n, k, in_dtype, quant_dtype, block_shape, per_out_ch_quant
),
make_test_weight(e, k, n, in_dtype, quant_dtype, block_shape, per_out_ch_quant),
)
def per_token_cast_to_fp8(
x: torch.Tensor, block_size: int = 128
) -> tuple[torch.Tensor, torch.Tensor]:
assert x.dim() == 2
m, n = x.shape
pad_size = (block_size - (n % block_size)) % block_size
x = torch.nn.functional.pad(x, (0, pad_size), value=0) if pad_size > 0 else x
x_view = x.view(m, -1, block_size)
x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
fp8_data = (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn)
return fp8_data.view(m, n + pad_size)[:, :n], (x_amax / 448.0).view(m, -1)
def make_test_quant_config(
e: int,
n: int,
k: int,
in_dtype: torch.dtype,
quant_dtype: torch.dtype | str | None = None,
per_act_token_quant: bool = False,
block_shape: list[int] | None = None,
) -> tuple[torch.Tensor, torch.Tensor, FusedMoEQuantConfig]:
(_, w1, w1_s, w1_gs), (_, w2, w2_s, w2_gs) = make_test_weights(
e,
n,
k,
in_dtype,
quant_dtype,
per_out_ch_quant=per_act_token_quant,
block_shape=block_shape,
)
# Hacky/trivial scales for nvfp4.
a1_gscale: torch.Tensor | None = None
a2_gscale: torch.Tensor | None = None
if quant_dtype == "nvfp4":
a1_gscale = torch.ones((e,), device="cuda", dtype=torch.float32)
a2_gscale = torch.ones((e,), device="cuda", dtype=torch.float32)
a1_scale = a1_gscale
a2_scale = a2_gscale
else:
a1_scale = None
a2_scale = None
return (
w1,
w2,
FusedMoEQuantConfig.make(
quant_dtype,
per_act_token_quant=per_act_token_quant,
block_shape=block_shape,
w1_scale=w1_s,
w2_scale=w2_s,
a1_gscale=a1_gscale,
a2_gscale=a2_gscale,
a1_scale=a1_scale,
a2_scale=a2_scale,
# TODO: make sure this is handled properly
g1_alphas=(1 / w1_gs) if w1_gs is not None else None,
g2_alphas=(1 / w2_gs) if w2_gs is not None else None,
),
)
def fused_moe(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
score: torch.Tensor,
topk: int,
renormalize: bool = False,
quant_config: FusedMoEQuantConfig | None = None,
global_num_experts: int = -1,
expert_map: torch.Tensor | None = None,
) -> torch.Tensor:
topk_weights, topk_ids, _ = fused_topk(
hidden_states, score.float(), topk, renormalize
)
return fused_experts(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
global_num_experts=global_num_experts,
expert_map=expert_map,
quant_config=quant_config,
)
# CustomOp?
class BaselineMM(torch.nn.Module):
def __init__(
self,
b: torch.Tensor,
out_dtype: torch.dtype,
):
super().__init__()
self.b = b.to(dtype=torch.float32)
self.out_dtype = out_dtype
def forward(self, a: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor | None]:
return torch.mm(a.to(dtype=torch.float32), self.b).to(self.out_dtype), None
class TestMLP(torch.nn.Module):
def __init__(
self,
w1: torch.Tensor,
w2: torch.Tensor,
out_dtype: torch.dtype,
):
super().__init__()
self.gate_up_proj = BaselineMM(w1, out_dtype)
self.down_proj = BaselineMM(w2, out_dtype)
self.act_fn = SiluAndMul()
def forward(self, x):
x, _ = self.gate_up_proj(x)
x = self.act_fn(x)
x, _ = self.down_proj(x)
return x
def make_naive_shared_experts(
N: int,
K: int,
in_dtype: torch.dtype = torch.bfloat16,
) -> torch.nn.Module:
w1 = torch.randn((K, N * 2), device="cuda", dtype=in_dtype) / 15
w2 = torch.randn((N, K), device="cuda", dtype=in_dtype) / 15
return TestMLP(w1, w2, out_dtype=in_dtype)
class RealMLP(torch.nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
w1: torch.Tensor,
w2: torch.Tensor,
hidden_act: str = "silu",
quant_config=None,
reduce_results: bool = True,
prefix: str = "",
w1_s: torch.Tensor | None = None,
w2_s: torch.Tensor | None = None,
) -> None:
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
RowParallelLinear,
)
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.gate_up_proj.register_parameter(
"weight", torch.nn.Parameter(w1, requires_grad=False)
)
self.gate_up_proj.register_parameter(
"weight_scale", torch.nn.Parameter(w1_s, requires_grad=False)
)
self.gate_up_proj.register_parameter(
"input_scale", None
) # torch.nn.Parameter(None, requires_grad=False))
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj",
)
self.down_proj.register_parameter(
"weight", torch.nn.Parameter(w2, requires_grad=False)
)
self.down_proj.register_parameter(
"weight_scale", torch.nn.Parameter(w2_s, requires_grad=False)
)
self.down_proj.register_parameter(
"input_scale", None
) # torch.nn.Parameter(None, requires_grad=False))
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
def make_shared_experts(
N: int,
K: int,
in_dtype: torch.dtype = torch.bfloat16,
quant_dtype: torch.dtype | str | None = None,
) -> torch.nn.Module:
from vllm.model_executor.layers.quantization.fp8 import Fp8Config
(_, w1, w1_s, _), (_, w2, w2_s, _) = make_test_weights(
1,
N,
K,
in_dtype=in_dtype,
quant_dtype=quant_dtype,
)
old_dtype = torch.get_default_dtype()
try:
torch.set_default_dtype(in_dtype)
if quant_dtype == torch.float8_e4m3fn:
w1 = w1[0].transpose(0, 1)
w2 = w2[0].transpose(0, 1)
w1_s = w1_s[0].transpose(0, 1) if w1_s is not None else None
w2_s = w2_s[0].transpose(0, 1) if w2_s is not None else None
quant_config = Fp8Config(True)
else:
w1 = w1[0]
w2 = w2[0]
w1_s = None
w2_s = None
quant_config = None
return RealMLP(K, N, w1, w2, "silu", quant_config, w1_s=w1_s, w2_s=w2_s)
finally:
torch.set_default_dtype(old_dtype)