mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:05:01 +08:00
73 lines
2.3 KiB
Python
73 lines
2.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Tests for mllama's multimodal preprocessing and profiling."""
|
|
|
|
import pytest
|
|
from torch import prod
|
|
from transformers import Llama4Config
|
|
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.profiling import MultiModalProfiler
|
|
|
|
from ...utils import build_model_context
|
|
|
|
|
|
@pytest.mark.parametrize("model_id", ["meta-llama/Llama-Guard-4-12B"])
|
|
@pytest.mark.parametrize("max_model_len", [4096, 8192, 25600, 131072])
|
|
def test_profiling(model_id: str, max_model_len: int):
|
|
model_config_kwargs = {
|
|
"max_model_len": max_model_len,
|
|
}
|
|
mm_counts = {"image": 1}
|
|
ctx = build_model_context(
|
|
model_id,
|
|
model_config_kwargs=model_config_kwargs,
|
|
limit_mm_per_prompt=mm_counts,
|
|
)
|
|
|
|
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
|
|
profiler = MultiModalProfiler(processor)
|
|
|
|
decoder_dummy_data = profiler.get_decoder_dummy_data(
|
|
max_model_len,
|
|
mm_counts=mm_counts,
|
|
)
|
|
dummy_mm_data = processor.dummy_inputs.get_dummy_processor_inputs(
|
|
max_model_len,
|
|
mm_counts=mm_counts,
|
|
)
|
|
|
|
hf_config = ctx.get_hf_config(Llama4Config)
|
|
|
|
mm_data = processor.apply(
|
|
prompt=dummy_mm_data.prompt,
|
|
mm_data=dummy_mm_data.mm_data,
|
|
hf_processor_mm_kwargs=dict(),
|
|
)["mm_kwargs"].get_data()
|
|
|
|
image_size = hf_config.vision_config.image_size
|
|
patch_size = hf_config.vision_config.patch_size
|
|
downsample_ratio = int(
|
|
round(1.0 / (hf_config.vision_config.pixel_shuffle_ratio**2))
|
|
)
|
|
tokens_per_patch = ((image_size // patch_size) ** 2) // downsample_ratio
|
|
chunks_per_image = prod(mm_data["patches_per_image"])
|
|
total_num_patches = chunks_per_image * tokens_per_patch
|
|
num_tiles = (
|
|
mm_data["aspect_ratios"][0][0] * mm_data["aspect_ratios"][0][1]
|
|
) # x-y separator tokens
|
|
total_tokens = (
|
|
total_num_patches.item() + num_tiles.item() + 3
|
|
) # image start, image, image end
|
|
|
|
profiled_tokens = profiler.get_mm_max_contiguous_tokens(
|
|
max_model_len,
|
|
mm_counts=mm_counts,
|
|
)
|
|
|
|
assert total_tokens == profiled_tokens["image"]
|
|
assert total_tokens == sum(
|
|
placeholder.length
|
|
for placeholder in decoder_dummy_data.multi_modal_placeholders["image"]
|
|
)
|