vllm/tests/models/multimodal/processing/test_tensor_schema.py
Cyrus Leung 66a168a197
[CI/Build] Refactor processing tests (#27470)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-10-25 16:14:30 +00:00

245 lines
8.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import tempfile
from collections.abc import Iterable
from contextlib import contextmanager
from functools import partial
from typing import Any, TypeAlias
import numpy as np
import pytest
import torch.nn as nn
from PIL import Image
from vllm.config import ModelConfig, VllmConfig, set_current_vllm_config
from vllm.config.multimodal import (
AudioDummyOptions,
BaseDummyOptions,
ImageDummyOptions,
VideoDummyOptions,
)
from vllm.distributed import (
cleanup_dist_env_and_memory,
init_distributed_environment,
initialize_model_parallel,
)
from vllm.model_executor.models.interfaces import (
SupportsMultiModal,
supports_multimodal,
)
from vllm.multimodal import MULTIMODAL_REGISTRY, BatchedTensorInputs
from vllm.multimodal.processing import BaseMultiModalProcessor, InputProcessingContext
from vllm.multimodal.utils import group_mm_kwargs_by_modality
from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
from vllm.utils.collection_utils import is_list_of
from vllm.utils.torch_utils import set_default_torch_dtype
from ...registry import HF_EXAMPLE_MODELS
from ...utils import dummy_hf_overrides
from .test_common import get_model_ids_to_test, get_text_token_prompts
ImageInput = list[Image.Image]
VideoInput: TypeAlias = (
list[Image.Image] | list[np.ndarray] | list[tuple[np.ndarray, dict[str, Any]]]
)
AudioInput = list[tuple[np.ndarray, int]]
MM_OPTIONS_OVERRIDES = {
# Qwen3-VL's default profiling video size (64x64) can cause trouble
# after resizing, so we override it here for testing.
"qwen3_vl": dict(
video=VideoDummyOptions(num_frames=128, width=256, height=256),
),
"qwen3_vl_moe": dict(
video=VideoDummyOptions(num_frames=128, width=256, height=256),
),
}
def _resize_data(
_data: Image.Image | np.ndarray, size_factor: float
) -> Image.Image | np.ndarray:
assert size_factor <= 1, "Size factor must be less than 1"
# Image input
if isinstance(_data, Image.Image):
W, H = _data.width, _data.height
W, H = map(lambda x: int(x * size_factor), (W, H))
return _data.resize((W, H))
# Video input with PIL Images
elif is_list_of(_data, Image.Image):
W, H = next(iter(_data)).width, next(iter(_data)).height
T = len(_data)
T, W, H = map(lambda x: max(int(x * size_factor), 1), (T, W, H))
return [d.resize((W, H)) for d in _data[:T]]
# Video input with numpy arrays
elif isinstance(_data, np.ndarray) and _data.ndim >= 4:
T, H, W, C = _data.shape[-4:]
T, H, W = map(lambda x: max(int(x * size_factor), 1), (T, H, W))
return _data[..., :T, :H, :W, :C]
# Audio input
elif isinstance(_data, np.ndarray) and _data.ndim == 1:
return _data[: int(len(_data) * size_factor)]
raise AssertionError("This line should be unreachable.")
def resize_mm_data(
data: ImageInput | VideoInput | AudioInput, size_factors: tuple[float, ...]
) -> ImageInput | VideoInput | AudioInput:
size_factors = size_factors[: len(data)]
if is_list_of(data, (Image.Image, np.ndarray, list)):
return [_resize_data(d, s) for d, s in zip(data, size_factors)]
elif is_list_of(data, tuple):
return [_resize_data(d, s) for (d, _), s in zip(data, size_factors)]
raise ValueError("Unsupported multimodal data type.")
def create_batched_mm_kwargs(
model_cls: type[SupportsMultiModal],
model_config: ModelConfig,
processor: BaseMultiModalProcessor,
size_factors: tuple[float, ...] = (1.0, 0.5, 0.25),
) -> Iterable[tuple[str, int, BatchedTensorInputs]]:
model_type = model_config.hf_config.model_type
processing_info = processor.info
dummy_inputs = processor.dummy_inputs
supported_mm_limits = processing_info.get_supported_mm_limits()
mm_counts = {
modality: 3 if limit is None else limit
for modality, limit in supported_mm_limits.items()
}
processor_inputs = dummy_inputs.get_dummy_processor_inputs(
seq_len=model_config.max_model_len,
mm_counts=mm_counts,
mm_options=MM_OPTIONS_OVERRIDES.get(model_type),
)
mm_data = processor_inputs.mm_data
resized_mm_data = {
modality: resize_mm_data(data, size_factors)
for modality, data in mm_data.items()
}
# video metadata will be added back to the resized video data here.
text_prompt, token_prompt = get_text_token_prompts(processor, resized_mm_data)
mm_kwargs = processor.apply(
prompt=token_prompt if text_prompt is None else text_prompt,
mm_data=resized_mm_data,
hf_processor_mm_kwargs=processor_inputs.hf_processor_mm_kwargs,
tokenization_kwargs=processor_inputs.tokenization_kwargs,
)["mm_kwargs"].require_data()
items = [item for modality in supported_mm_limits for item in mm_kwargs[modality]]
return group_mm_kwargs_by_modality(
items,
merge_by_field_config=model_cls.merge_by_field_config,
)
@contextmanager
def initialize_dummy_model(
model_cls: type[nn.Module],
model_config: ModelConfig,
):
temp_file = tempfile.mkstemp()[1]
init_distributed_environment(
world_size=1,
rank=0,
distributed_init_method=f"file://{temp_file}",
local_rank=0,
backend="nccl",
)
initialize_model_parallel(tensor_model_parallel_size=1)
vllm_config = VllmConfig(model_config=model_config)
with set_current_vllm_config(vllm_config=vllm_config):
with set_default_torch_dtype(model_config.dtype):
model = model_cls(vllm_config=vllm_config)
yield model
del model
cleanup_dist_env_and_memory()
@pytest.mark.parametrize("model_id", get_model_ids_to_test())
def test_model_tensor_schema(model_id: str):
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
model_info.check_available_online(on_fail="skip")
model_info.check_transformers_version(on_fail="skip")
model_arch = next(
arch for arch, info in HF_EXAMPLE_MODELS.hf_models.items() if info == model_info
)
hf_overrides_fn = partial(
dummy_hf_overrides,
model_arch=model_arch,
exist_overrides=model_info.hf_overrides,
)
model_config = ModelConfig(
model_id,
tokenizer=model_info.tokenizer or model_id,
tokenizer_mode=model_info.tokenizer_mode,
revision=model_info.revision,
trust_remote_code=model_info.trust_remote_code,
hf_overrides=hf_overrides_fn,
skip_tokenizer_init=model_info.require_embed_inputs,
enable_prompt_embeds=model_info.require_embed_inputs,
enable_mm_embeds=model_info.require_embed_inputs,
enforce_eager=model_info.enforce_eager,
dtype=model_info.dtype,
)
model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config)
assert supports_multimodal(model_cls)
factories = MULTIMODAL_REGISTRY._processor_factories[model_cls]
inputs_parse_methods = []
for attr_name in dir(model_cls):
attr = getattr(model_cls, attr_name)
if hasattr(attr, "__annotations__"):
return_type = attr.__annotations__.get("return", None)
if return_type is not None and "Input" in str(return_type):
inputs_parse_methods.append(attr_name)
if not any(inputs_parse_methods):
pytest.skip(f"{model_arch} does not support tensor schema validation.")
ctx = InputProcessingContext(
model_config,
tokenizer=cached_tokenizer_from_config(model_config),
)
processing_info = factories.info(ctx)
supported_mm_limits = processing_info.get_supported_mm_limits()
limit_mm_per_prompt = {
modality: 3 if limit is None else limit
for modality, limit in supported_mm_limits.items()
}
def _to_dummy_options(modality: str, count: int) -> BaseDummyOptions:
if modality == "video":
return VideoDummyOptions(count=count)
if modality == "image":
return ImageDummyOptions(count=count)
if modality == "audio":
return AudioDummyOptions(count=count)
return BaseDummyOptions(count=count)
model_config.get_multimodal_config().limit_per_prompt = {
modality: _to_dummy_options(modality, count)
for modality, count in limit_mm_per_prompt.items()
}
processor = factories.build_processor(ctx, cache=None)
with initialize_dummy_model(model_cls, model_config) as model:
for modality, _, mm_kwargs in create_batched_mm_kwargs(
model_cls, model_config, processor
):
for method_name in inputs_parse_methods:
print(
f"Testing `{method_name}` with modality={modality} "
f"and mm_kwargs{list(mm_kwargs.keys())}"
)
getattr(model, method_name)(modality=modality, **mm_kwargs)