mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 15:45:34 +08:00
830 lines
28 KiB
Python
830 lines
28 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# Copyright 2025 Horizon team, Xiaomi MiLM Plus.
|
|
# Copyright 2024 The Qwen team.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only MiDashengLM model compatible with HuggingFace weights."""
|
|
|
|
import collections
|
|
import collections.abc
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Any, Callable, Optional, TypedDict, Union, cast
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torchaudio.functional as F
|
|
from torch.nn.functional import scaled_dot_product_attention
|
|
from transformers import BatchFeature
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
|
MultiModalKwargsItems)
|
|
from vllm.multimodal.parse import MultiModalDataItems, MultiModalDataParser
|
|
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
|
BaseProcessingInfo, PromptReplacement,
|
|
PromptUpdate, PromptUpdateDetails)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs.midashenglm import DashengConfig
|
|
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .utils import AutoWeightsLoader, init_vllm_registered_model, maybe_prefix
|
|
|
|
_Tuple2 = Union[int, tuple[int, int], Sequence[int]]
|
|
|
|
|
|
def _resolve_tuple2(x: _Tuple2) -> tuple[int, int]:
|
|
if isinstance(x, collections.abc.Sequence):
|
|
assert len(x) == 2, (
|
|
f"Expected a sequence of length 2, got {x} with length {len(x)}")
|
|
return cast(tuple[int, int], tuple(x))
|
|
return (x, x)
|
|
|
|
|
|
def calculate_mel_frames_dasheng(
|
|
audio_length_samples: int,
|
|
n_fft: int = 512,
|
|
hop_size: int = 160,
|
|
dasheng_subsampling: int = 4,
|
|
center=True,
|
|
model_subsampling: int = 5,
|
|
) -> int:
|
|
"""Calculate the number of Mel-spectrogram frames."""
|
|
if center:
|
|
audio_length_samples = audio_length_samples + n_fft
|
|
|
|
return (int(1 + ((audio_length_samples - n_fft) / hop_size)) //
|
|
dasheng_subsampling // model_subsampling)
|
|
|
|
|
|
class AudioPatchEmbed(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
input_size: _Tuple2 = 64,
|
|
patch_size: _Tuple2 = 16,
|
|
patch_stride: _Tuple2 = 16,
|
|
in_chans: int = 1,
|
|
embed_dim: int = 768,
|
|
norm_layer: Optional[Callable] = None,
|
|
flatten: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.input_size = _resolve_tuple2(input_size)
|
|
self.patch_size = _resolve_tuple2(patch_size)
|
|
self.patch_stride = _resolve_tuple2(patch_stride)
|
|
self.grid_size = (
|
|
self.input_size[0] // self.patch_stride[0],
|
|
self.input_size[1] // self.patch_stride[1],
|
|
)
|
|
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
|
self.flatten = flatten
|
|
|
|
self.proj = nn.Conv2d(
|
|
in_chans,
|
|
embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_stride,
|
|
)
|
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.proj(x)
|
|
if self.flatten:
|
|
x = torch.permute(torch.flatten(
|
|
x, 2, 3), (0, 2, 1)) # rearrange(x, "b c f t -> b (f t) c")
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
|
|
class LayerScale(nn.Module):
|
|
|
|
def __init__(self, dim, init_values=1e-5, inplace=False):
|
|
super().__init__()
|
|
self.inplace = inplace
|
|
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
|
|
|
|
|
class DashengMlp(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
hidden_features: Optional[int] = None,
|
|
out_features: Optional[int] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = ColumnParallelLinear(
|
|
input_size=in_features,
|
|
output_size=hidden_features,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc1",
|
|
)
|
|
self.act = get_act_fn("gelu")
|
|
self.fc2 = RowParallelLinear(
|
|
input_size=hidden_features,
|
|
output_size=out_features,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc2",
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x, _ = self.fc1(x)
|
|
x = self.act(x)
|
|
x, _ = self.fc2(x)
|
|
return x
|
|
|
|
|
|
class DashengAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int = 8,
|
|
qkv_bias: bool = False,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
|
self.embed_dim = dim
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
if self.total_num_heads >= tp_size:
|
|
# Number of heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_heads % tp_size == 0
|
|
else:
|
|
# Number of heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_heads // tp_size)
|
|
self.head_dim = self.embed_dim // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.qkv = QKVParallelLinear(
|
|
hidden_size=self.embed_dim,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.total_num_heads,
|
|
total_num_kv_heads=self.total_num_heads,
|
|
bias=qkv_bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv",
|
|
)
|
|
self.proj = RowParallelLinear(
|
|
input_size=dim,
|
|
output_size=dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.proj",
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None):
|
|
B, N, C = x.shape
|
|
|
|
qkv, _ = self.qkv(x)
|
|
qkv = qkv.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
|
qkv = qkv.permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv.unbind(0)
|
|
|
|
x = scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=mask[:, None, None, :] if mask is not None else None,
|
|
)
|
|
|
|
x = x.transpose(1, 2).reshape(B, N, C)
|
|
x, _ = self.proj(x)
|
|
return x
|
|
|
|
|
|
class DashengBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
qkv_bias: bool = False,
|
|
init_values: Optional[float] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
|
|
self.attn = DashengAttention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
self.ls1 = (LayerScale(dim, init_values=init_values)
|
|
if init_values else nn.Identity())
|
|
|
|
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
|
|
self.mlp = DashengMlp(
|
|
in_features=dim,
|
|
hidden_features=int(dim * mlp_ratio),
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.ls2 = (LayerScale(dim, init_values=init_values)
|
|
if init_values else nn.Identity())
|
|
|
|
# Kwargs usually has a mask parameter that is passed to Attention
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
x = x + self.ls1(self.attn(self.norm1(x), mask))
|
|
x = x + self.ls2(self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class DashengFrontend(nn.Module):
|
|
|
|
def __init__(self, config: DashengConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
spectrogram_window = torch.hann_window(self.config.win_length)
|
|
self.register_buffer(
|
|
"spectrogram_window",
|
|
spectrogram_window,
|
|
persistent=False,
|
|
)
|
|
self.spectrogram_window: torch.Tensor
|
|
|
|
melscale_fbanks = F.melscale_fbanks(
|
|
n_freqs=self.config.n_fft // 2 + 1,
|
|
f_min=self.config.f_min,
|
|
f_max=self.config.f_max,
|
|
n_mels=self.config.n_mels,
|
|
sample_rate=self.config.sample_rate,
|
|
)
|
|
self.register_buffer("melscale_fbanks",
|
|
melscale_fbanks,
|
|
persistent=False)
|
|
self.melscale_fbanks: torch.Tensor
|
|
|
|
def forward(self, waveform: torch.Tensor) -> torch.Tensor:
|
|
spectrogram = F.spectrogram(
|
|
waveform=waveform.to(torch.float32),
|
|
pad=0,
|
|
window=self.spectrogram_window,
|
|
n_fft=self.config.n_fft,
|
|
hop_length=self.config.hop_length,
|
|
win_length=self.config.win_length,
|
|
power=2,
|
|
normalized=False,
|
|
center=self.config.center,
|
|
)
|
|
mel_spectrogram = (
|
|
spectrogram.mT @ self.melscale_fbanks.to(torch.float32)).mT
|
|
# x has shape [batch, freq, time].
|
|
# F.amplitude_to_DB accepts inputs shaped as:
|
|
# - [freq, time]
|
|
# - [channel, freq, time]
|
|
# - [..., channel, freq, time]
|
|
# Here we insert a channel dimension of size 1 before calling it,
|
|
# then remove that extra dimension afterward.
|
|
log_mel_spectrogram = F.amplitude_to_DB(
|
|
mel_spectrogram.unsqueeze(1),
|
|
multiplier=10,
|
|
amin=1e-10,
|
|
db_multiplier=0,
|
|
top_db=120,
|
|
).squeeze(1)
|
|
return log_mel_spectrogram.to(waveform.dtype)
|
|
|
|
|
|
class DashengAudioTransformer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: DashengConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
|
|
self.target_length = config.target_length
|
|
self.hop_length = config.hop_length
|
|
|
|
self.front_end = DashengFrontend(config)
|
|
|
|
self.init_bn = nn.BatchNorm2d(config.n_mels, momentum=0.01)
|
|
|
|
self.patch_embed = AudioPatchEmbed(
|
|
input_size=(config.n_mels, config.target_length),
|
|
embed_dim=config.embed_dim,
|
|
in_chans=config.input_channels,
|
|
patch_size=config.patch_size,
|
|
flatten=False,
|
|
patch_stride=config.patch_stride,
|
|
)
|
|
|
|
self.time_pos_embed = nn.Parameter(
|
|
torch.empty(1, config.embed_dim, 1, self.patch_embed.grid_size[1]))
|
|
self.freq_pos_embed = nn.Parameter(
|
|
torch.empty(1, config.embed_dim, self.patch_embed.grid_size[0], 1))
|
|
self.blocks = nn.ModuleList(
|
|
DashengBlock(
|
|
dim=config.embed_dim,
|
|
num_heads=config.num_heads,
|
|
mlp_ratio=config.mlp_ratio,
|
|
qkv_bias=config.qkv_bias,
|
|
init_values=config.init_values,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.blocks.{i}",
|
|
) for i in range(config.depth))
|
|
self.norm = nn.LayerNorm(config.embed_dim, eps=1e-6)
|
|
|
|
def forward_features(
|
|
self,
|
|
x: torch.Tensor,
|
|
mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
t = x.shape[-1]
|
|
x = x + self.time_pos_embed[:, :, :, :t]
|
|
x = (x + self.freq_pos_embed[:, :, :, :]
|
|
) # Just to support __getitem__ in posembed
|
|
x = torch.permute(torch.flatten(x, 2, 3),
|
|
(0, 2, 1)) # rearrange(x, "b c f t -> b (f t) c")
|
|
for block in self.blocks:
|
|
x = block(x, mask)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
|
|
batch_size = len(lengths)
|
|
idx = torch.arange(max_length, device=lengths.device)
|
|
idx = idx.repeat(batch_size).view(batch_size, max_length)
|
|
mask = (idx < lengths.unsqueeze(-1)).bool()
|
|
return mask
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_length: Optional[torch.Tensor] = None,
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
x = self.front_end(x)
|
|
x = x.to(self.time_pos_embed.dtype)
|
|
target_length_in_patches = self.target_length // 4
|
|
x = x.unsqueeze(1)
|
|
x = torch.permute(x, (0, 2, 1, 3))
|
|
x = self.init_bn(x)
|
|
x = torch.permute(x, (0, 2, 1, 3))
|
|
|
|
x = self.patch_embed(x)
|
|
t = x.shape[-1]
|
|
|
|
input_splits = x.split(target_length_in_patches, dim=-1)
|
|
|
|
if x_length is not None:
|
|
assert len(x_length) == len(x), (
|
|
"batchsizes of input x and x_length need to be same")
|
|
assert x_length.ndim == 1, "Lengths are of size (B,)"
|
|
scaled_lengths = (x_length / (self.hop_length * 4)).long()
|
|
mask = self._to_mask(max_length=t, lengths=scaled_lengths)
|
|
split_masks = mask.split(target_length_in_patches, dim=-1)
|
|
else:
|
|
mask = None
|
|
split_masks = [None] * len(input_splits)
|
|
|
|
outputs = []
|
|
|
|
for split_x, split_mask in zip(input_splits, split_masks):
|
|
forward_kwargs = {}
|
|
forward_kwargs["mask"] = split_mask
|
|
split_x = self.forward_features(split_x, **forward_kwargs)
|
|
outputs.append(split_x)
|
|
x = torch.cat(outputs, dim=1)
|
|
return x, mask
|
|
|
|
|
|
class AudioProjectorSubsample(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
in_dim: int,
|
|
out_dim: int,
|
|
downsample_rate=5,
|
|
dtype: Optional[torch.dtype] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.k = downsample_rate
|
|
self.net = nn.Sequential(
|
|
ColumnParallelLinear(
|
|
input_size=in_dim * self.k,
|
|
output_size=out_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.net.0",
|
|
return_bias=False,
|
|
),
|
|
get_act_fn("gelu"),
|
|
RowParallelLinear(
|
|
input_size=out_dim,
|
|
output_size=out_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.net.2",
|
|
return_bias=False,
|
|
),
|
|
)
|
|
|
|
def forward(self, x, mask=None):
|
|
batch_size, seq_len, dim = x.shape
|
|
num_frames_to_discard = seq_len % self.k
|
|
if num_frames_to_discard > 0:
|
|
x = x[:, :-num_frames_to_discard, :]
|
|
if mask is not None:
|
|
mask = mask[:, :-num_frames_to_discard]
|
|
if mask is None:
|
|
mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device)
|
|
x = x.reshape(batch_size, -1, self.k *
|
|
dim) # rearrange(x, "b (s k) d -> b s (k d)", k=self.k)
|
|
for layer in self.net:
|
|
x = layer(x)
|
|
mask = mask.reshape(
|
|
batch_size, -1,
|
|
self.k) # rearrange(mask, "b (s k) -> b s k", k=self.k)
|
|
mask = mask.any(dim=-1).long()
|
|
return x, mask
|
|
|
|
|
|
# === Audio Inputs === #
|
|
class MiDashengLMAudioInputs(TypedDict):
|
|
input_values: torch.Tensor
|
|
"""Shape: `(num_audios, num_sampling_points)`"""
|
|
audio_length: torch.Tensor
|
|
"""Shape: `(num_audios, 1)`"""
|
|
|
|
|
|
class MiDashengLMProcessingInfo(BaseProcessingInfo):
|
|
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config()
|
|
|
|
def get_feature_extractor(self):
|
|
hf_processor = self.get_hf_processor()
|
|
feature_extractor = hf_processor.feature_extractor
|
|
return feature_extractor
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"audio": None}
|
|
|
|
def get_min_audio_len(self):
|
|
return 3200
|
|
|
|
def get_max_audio_len(self):
|
|
return 160000
|
|
|
|
|
|
class MiDashengLMDummyInputsBuilder(
|
|
BaseDummyInputsBuilder[MiDashengLMProcessingInfo]):
|
|
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
|
|
hf_processor = self.info.get_hf_processor()
|
|
audio_token = hf_processor.audio_token
|
|
audio_bos_token = hf_processor.audio_bos_token
|
|
audio_eos_token = hf_processor.audio_eos_token
|
|
|
|
single_audio_text = f"{audio_bos_token}{audio_token}{audio_eos_token}"
|
|
return single_audio_text * num_audios
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> MultiModalDataDict:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
|
|
return {
|
|
"audio":
|
|
self._get_dummy_audios(length=self.info.get_max_audio_len(),
|
|
num_audios=num_audios)
|
|
}
|
|
|
|
|
|
class MiDashengLMMultiModalProcessor(
|
|
BaseMultiModalProcessor[MiDashengLMProcessingInfo]):
|
|
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, Any],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
audios = mm_data.pop("audios", [])
|
|
|
|
# + Padding
|
|
min_audio_len = self.info.get_min_audio_len()
|
|
processed_audios = [
|
|
np.pad(
|
|
audio,
|
|
(0, min_audio_len - audio.shape[-1]),
|
|
mode="constant",
|
|
constant_values=0,
|
|
) if isinstance(audio, np.ndarray)
|
|
and audio.shape[-1] < min_audio_len else audio for audio in audios
|
|
]
|
|
|
|
if processed_audios:
|
|
mm_data["audio"] = processed_audios
|
|
|
|
if not mm_data.get("audio", []):
|
|
prompt_ids = self.info.get_tokenizer().encode(prompt)
|
|
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
|
|
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
|
|
|
|
mm_kwargs = dict(**mm_kwargs, )
|
|
|
|
return super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
input_values=MultiModalFieldConfig.batched("audio"),
|
|
audio_length=MultiModalFieldConfig.batched("audio"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
tokenizer = self.info.get_tokenizer()
|
|
vocab = tokenizer.get_vocab()
|
|
|
|
audio_token = getattr(processor, "audio_token", "<|AUDIO|>")
|
|
audio_token_id = vocab[audio_token]
|
|
|
|
out_mm_data = out_mm_kwargs.get_data()
|
|
audio_length = out_mm_data.get("audio_length")
|
|
if audio_length is None:
|
|
audio_output_lengths = []
|
|
else:
|
|
audio_length_np = (audio_length.cpu().numpy() if isinstance(
|
|
audio_length, torch.Tensor) else audio_length)
|
|
audio_output_lengths = [
|
|
max(1, calculate_mel_frames_dasheng(
|
|
int(length))) # at least one frame
|
|
for length in audio_length_np
|
|
]
|
|
|
|
def get_replacement_midashenglm(item_idx: int):
|
|
num_features = audio_output_lengths[item_idx]
|
|
audio_tokens = [audio_token_id] * num_features
|
|
|
|
return PromptUpdateDetails.select_token_id(
|
|
audio_tokens,
|
|
embed_token_id=audio_token_id,
|
|
)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="audio",
|
|
target=audio_token,
|
|
replacement=get_replacement_midashenglm,
|
|
)
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
MiDashengLMMultiModalProcessor,
|
|
info=MiDashengLMProcessingInfo,
|
|
dummy_inputs=MiDashengLMDummyInputsBuilder,
|
|
)
|
|
class MiDashengLMModel(nn.Module, SupportsMultiModal, SupportsPP):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
|
|
if modality.startswith("audio"):
|
|
return "<|audio_bos|><|AUDIO|><|audio_eos|>"
|
|
|
|
raise ValueError("Only audio modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
|
|
# Initialize audio components
|
|
self.audio_encoder = DashengAudioTransformer(
|
|
config.audio_encoder_config,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "audio_encoder"),
|
|
)
|
|
self.audio_projector = AudioProjectorSubsample(
|
|
in_dim=config.audio_encoder_config.embed_dim,
|
|
out_dim=config.text_config.hidden_size,
|
|
downsample_rate=config.subsample_factor,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "audio_projector"),
|
|
)
|
|
|
|
# Initialize language model (decoder)
|
|
self.decoder = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "decoder"),
|
|
architectures=["Qwen2ForCausalLM"],
|
|
)
|
|
|
|
self.quant_config = quant_config
|
|
self.make_empty_intermediate_tensors = (
|
|
self.decoder.make_empty_intermediate_tensors)
|
|
|
|
def _validate_and_reshape_mm_tensor(self, mm_input: object,
|
|
name: str) -> torch.Tensor:
|
|
if not isinstance(mm_input, (torch.Tensor, list)):
|
|
raise ValueError(
|
|
f"Incorrect type of {name}. Got type: {type(mm_input)}")
|
|
if isinstance(mm_input, torch.Tensor):
|
|
return mm_input.reshape(-1, *mm_input.shape[2:])
|
|
|
|
if name == "input_values":
|
|
max_length = max(tensor.shape[1] for tensor in mm_input)
|
|
padded_mm_input = [
|
|
torch.nn.functional.pad(tensor,
|
|
(0, max_length - tensor.shape[1]))
|
|
if tensor.shape[1] < max_length else tensor
|
|
for tensor in mm_input
|
|
]
|
|
return torch.concat(padded_mm_input)
|
|
|
|
return torch.concat(mm_input)
|
|
|
|
def _parse_and_validate_audio_input(
|
|
self, **kwargs: object) -> Optional[MiDashengLMAudioInputs]:
|
|
input_values = kwargs.pop("input_values", None)
|
|
audio_length = kwargs.pop("audio_length", None)
|
|
|
|
if input_values is None:
|
|
return None
|
|
input_values = self._validate_and_reshape_mm_tensor(
|
|
input_values, "input_values")
|
|
audio_length = self._validate_and_reshape_mm_tensor(
|
|
audio_length, "audio_length")
|
|
if not isinstance(input_values, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio input features. "
|
|
f"Got type: {type(input_values)}")
|
|
|
|
return MiDashengLMAudioInputs(
|
|
input_values=input_values,
|
|
audio_length=audio_length,
|
|
)
|
|
|
|
def _process_audio_input(
|
|
self, audio_input: MiDashengLMAudioInputs) -> torch.Tensor:
|
|
# Process audio through encoder and projector
|
|
input_values = audio_input["input_values"]
|
|
audio_length = audio_input["audio_length"]
|
|
|
|
encoder_out, encoder_atts = self.audio_encoder(input_values,
|
|
audio_length)
|
|
audio_embeddings, _ = self.audio_projector(encoder_out, encoder_atts)
|
|
audio_embeddings = audio_embeddings.to(
|
|
audio_input["input_values"].dtype)
|
|
batch_size, max_audio_tokens, embed_dim = audio_embeddings.shape
|
|
|
|
audio_length_np = (audio_length.cpu().numpy() if isinstance(
|
|
audio_length, torch.Tensor) else audio_length)
|
|
audio_output_lengths = [
|
|
max(1, calculate_mel_frames_dasheng(
|
|
int(length))) # at least one frame
|
|
for length in audio_length_np
|
|
]
|
|
audio_output_lengths = torch.tensor(audio_output_lengths).to(
|
|
audio_embeddings.device)
|
|
|
|
audio_feature_mask = torch.arange(
|
|
max_audio_tokens,
|
|
device=audio_embeddings.device).unsqueeze(0).expand(
|
|
batch_size,
|
|
max_audio_tokens) < audio_output_lengths.unsqueeze(1)
|
|
|
|
masked_audio_features = audio_embeddings[audio_feature_mask].view(
|
|
-1, embed_dim)
|
|
|
|
return torch.split(masked_audio_features,
|
|
audio_output_lengths.tolist())
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.decoder
|
|
|
|
def get_multimodal_embeddings(self,
|
|
**kwargs: object) -> MultiModalEmbeddings:
|
|
audio_input = self._parse_and_validate_audio_input(**kwargs)
|
|
|
|
if audio_input is None:
|
|
return []
|
|
return self._process_audio_input(audio_input)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs: object,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
elif inputs_embeds is None:
|
|
multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
|
|
inputs_embeds = self.get_input_embeddings(
|
|
input_ids,
|
|
multimodal_embeddings,
|
|
is_multimodal=input_ids == self.config.audio_token_id,
|
|
)
|
|
input_ids = None
|
|
|
|
return self.decoder.model(
|
|
input_ids,
|
|
positions,
|
|
intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> Optional[torch.Tensor]:
|
|
return self.decoder.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|