mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 18:35:01 +08:00
97 lines
3.4 KiB
Python
97 lines
3.4 KiB
Python
from typing import Dict, List, Set, Tuple
|
|
|
|
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
|
|
from vllm.utils import make_async
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class NeuronExecutor(ExecutorBase):
|
|
|
|
def _init_executor(self) -> None:
|
|
assert (self.lora_config is
|
|
None), "LoRA is not supported for Neuron backend."
|
|
assert (not self.speculative_config
|
|
), "Speculative decoding not yet supported for Neuron backend."
|
|
|
|
# Instantiate the worker and load the model to the device.
|
|
self._init_worker()
|
|
|
|
def _init_worker(self):
|
|
from vllm.worker.neuron_worker import NeuronWorker
|
|
|
|
self.driver_worker = NeuronWorker(
|
|
self.model_config,
|
|
self.parallel_config,
|
|
self.scheduler_config,
|
|
self.device_config,
|
|
self.cache_config,
|
|
)
|
|
self.driver_worker.init_device()
|
|
self.driver_worker.load_model()
|
|
|
|
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
|
"""Determine the number of available KV blocks by invoking the
|
|
underlying worker.
|
|
"""
|
|
return self.driver_worker.determine_num_available_blocks()
|
|
|
|
def initialize_cache(self, num_gpu_blocks: int,
|
|
num_cpu_blocks: int) -> None:
|
|
"""Initialize the KV cache by invoking the underlying worker.
|
|
"""
|
|
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
|
|
|
|
def execute_model(self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
blocks_to_swap_in: Dict[int, int],
|
|
blocks_to_swap_out: Dict[int, int],
|
|
blocks_to_copy: Dict[int, List[int]],
|
|
num_lookahead_slots: int) -> List[SamplerOutput]:
|
|
assert (blocks_to_swap_in == {} and blocks_to_swap_out == {}
|
|
and blocks_to_copy == {}), (
|
|
"Cache operations are not supported for Neuron backend.")
|
|
assert num_lookahead_slots == 0, (
|
|
"lookahead not supported for Neuron backend.")
|
|
|
|
output = self.driver_worker.execute_model(
|
|
seq_group_metadata_list=seq_group_metadata_list)
|
|
return output
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
return self.driver_worker.add_lora(lora_request)
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
return self.driver_worker.remove_lora(lora_id)
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
return self.driver_worker.list_loras()
|
|
|
|
def check_health(self) -> None:
|
|
# NeuronExecutor will always be healthy as long as
|
|
# it's running.
|
|
return
|
|
|
|
|
|
class NeuronExecutorAsync(NeuronExecutor, ExecutorAsyncBase):
|
|
|
|
async def execute_model_async(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
blocks_to_swap_in: Dict[int, int],
|
|
blocks_to_swap_out: Dict[int, int],
|
|
blocks_to_copy: Dict[int, List[int]],
|
|
num_lookahead_slots: int,
|
|
) -> List[SamplerOutput]:
|
|
output = await make_async(self.driver_worker.execute_model)(
|
|
seq_group_metadata_list=seq_group_metadata_list, )
|
|
return output
|
|
|
|
async def check_health_async(self) -> None:
|
|
# NeuronExecutor will always be healthy as long as
|
|
# it's running.
|
|
return
|