mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:44:57 +08:00
91 lines
3.5 KiB
Python
91 lines
3.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from typing import Any
|
|
|
|
import pytest
|
|
|
|
from .embed_utils import EmbedModelInfo, correctness_test_embed_models
|
|
from .mteb_utils import mteb_test_embed_models
|
|
|
|
MODELS = [
|
|
########## BertModel
|
|
EmbedModelInfo("thenlper/gte-large",
|
|
architecture="BertModel",
|
|
enable_test=True),
|
|
EmbedModelInfo("thenlper/gte-base",
|
|
architecture="BertModel",
|
|
enable_test=False),
|
|
EmbedModelInfo("thenlper/gte-small",
|
|
architecture="BertModel",
|
|
enable_test=False),
|
|
EmbedModelInfo("thenlper/gte-large-zh",
|
|
architecture="BertModel",
|
|
enable_test=False),
|
|
EmbedModelInfo("thenlper/gte-base-zh",
|
|
architecture="BertModel",
|
|
enable_test=False),
|
|
EmbedModelInfo("thenlper/gte-small-zh",
|
|
architecture="BertModel",
|
|
enable_test=False),
|
|
########### NewModel
|
|
EmbedModelInfo("Alibaba-NLP/gte-multilingual-base",
|
|
architecture="GteNewModel",
|
|
enable_test=True),
|
|
EmbedModelInfo("Alibaba-NLP/gte-base-en-v1.5",
|
|
architecture="GteNewModel",
|
|
enable_test=True),
|
|
EmbedModelInfo("Alibaba-NLP/gte-large-en-v1.5",
|
|
architecture="GteNewModel",
|
|
enable_test=True),
|
|
########### Qwen2ForCausalLM
|
|
EmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
architecture="Qwen2ForCausalLM",
|
|
enable_test=True),
|
|
########## ModernBertModel
|
|
EmbedModelInfo("Alibaba-NLP/gte-modernbert-base",
|
|
architecture="ModernBertModel",
|
|
enable_test=True),
|
|
########## Qwen3ForCausalLM
|
|
EmbedModelInfo("Qwen/Qwen3-Embedding-0.6B",
|
|
architecture="Qwen3ForCausalLM",
|
|
dtype="float32",
|
|
enable_test=True),
|
|
EmbedModelInfo("Qwen/Qwen3-Embedding-4B",
|
|
architecture="Qwen3ForCausalLM",
|
|
dtype="float32",
|
|
enable_test=False),
|
|
]
|
|
|
|
V1FlashAttentionImpNotSupported = [
|
|
"Alibaba-NLP/gte-Qwen2-1.5B-instruct", "Alibaba-NLP/gte-modernbert-base"
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("model_info", MODELS)
|
|
def test_embed_models_mteb(hf_runner, vllm_runner, model_info: EmbedModelInfo,
|
|
monkeypatch) -> None:
|
|
if model_info.name in V1FlashAttentionImpNotSupported:
|
|
monkeypatch.setenv("VLLM_USE_V1", "0")
|
|
|
|
vllm_extra_kwargs: dict[str, Any] = {}
|
|
if model_info.architecture == "GteNewModel":
|
|
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
|
|
|
|
mteb_test_embed_models(hf_runner, vllm_runner, model_info,
|
|
vllm_extra_kwargs)
|
|
|
|
|
|
@pytest.mark.parametrize("model_info", MODELS)
|
|
def test_embed_models_correctness(hf_runner, vllm_runner,
|
|
model_info: EmbedModelInfo, example_prompts,
|
|
monkeypatch) -> None:
|
|
if model_info.name in V1FlashAttentionImpNotSupported:
|
|
monkeypatch.setenv("VLLM_USE_V1", "0")
|
|
|
|
vllm_extra_kwargs: dict[str, Any] = {}
|
|
if model_info.architecture == "GteNewModel":
|
|
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
|
|
|
|
correctness_test_embed_models(hf_runner, vllm_runner, model_info,
|
|
example_prompts, vllm_extra_kwargs)
|