wang.yuqi 2e26f9156a
[Model][3/N] Automatic conversion of CrossEncoding model (#20168)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-07-04 05:47:39 -07:00

91 lines
3.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any
import pytest
from .embed_utils import EmbedModelInfo, correctness_test_embed_models
from .mteb_utils import mteb_test_embed_models
MODELS = [
########## BertModel
EmbedModelInfo("thenlper/gte-large",
architecture="BertModel",
enable_test=True),
EmbedModelInfo("thenlper/gte-base",
architecture="BertModel",
enable_test=False),
EmbedModelInfo("thenlper/gte-small",
architecture="BertModel",
enable_test=False),
EmbedModelInfo("thenlper/gte-large-zh",
architecture="BertModel",
enable_test=False),
EmbedModelInfo("thenlper/gte-base-zh",
architecture="BertModel",
enable_test=False),
EmbedModelInfo("thenlper/gte-small-zh",
architecture="BertModel",
enable_test=False),
########### NewModel
EmbedModelInfo("Alibaba-NLP/gte-multilingual-base",
architecture="GteNewModel",
enable_test=True),
EmbedModelInfo("Alibaba-NLP/gte-base-en-v1.5",
architecture="GteNewModel",
enable_test=True),
EmbedModelInfo("Alibaba-NLP/gte-large-en-v1.5",
architecture="GteNewModel",
enable_test=True),
########### Qwen2ForCausalLM
EmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
architecture="Qwen2ForCausalLM",
enable_test=True),
########## ModernBertModel
EmbedModelInfo("Alibaba-NLP/gte-modernbert-base",
architecture="ModernBertModel",
enable_test=True),
########## Qwen3ForCausalLM
EmbedModelInfo("Qwen/Qwen3-Embedding-0.6B",
architecture="Qwen3ForCausalLM",
dtype="float32",
enable_test=True),
EmbedModelInfo("Qwen/Qwen3-Embedding-4B",
architecture="Qwen3ForCausalLM",
dtype="float32",
enable_test=False),
]
V1FlashAttentionImpNotSupported = [
"Alibaba-NLP/gte-Qwen2-1.5B-instruct", "Alibaba-NLP/gte-modernbert-base"
]
@pytest.mark.parametrize("model_info", MODELS)
def test_embed_models_mteb(hf_runner, vllm_runner, model_info: EmbedModelInfo,
monkeypatch) -> None:
if model_info.name in V1FlashAttentionImpNotSupported:
monkeypatch.setenv("VLLM_USE_V1", "0")
vllm_extra_kwargs: dict[str, Any] = {}
if model_info.architecture == "GteNewModel":
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
mteb_test_embed_models(hf_runner, vllm_runner, model_info,
vllm_extra_kwargs)
@pytest.mark.parametrize("model_info", MODELS)
def test_embed_models_correctness(hf_runner, vllm_runner,
model_info: EmbedModelInfo, example_prompts,
monkeypatch) -> None:
if model_info.name in V1FlashAttentionImpNotSupported:
monkeypatch.setenv("VLLM_USE_V1", "0")
vllm_extra_kwargs: dict[str, Any] = {}
if model_info.architecture == "GteNewModel":
vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]}
correctness_test_embed_models(hf_runner, vllm_runner, model_info,
example_prompts, vllm_extra_kwargs)