mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 06:55:01 +08:00
444 lines
14 KiB
Python
444 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from itertools import groupby
|
|
from pathlib import Path
|
|
from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union
|
|
from urllib.parse import ParseResult, urlparse
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
import torch
|
|
from PIL import Image, UnidentifiedImageError
|
|
|
|
import vllm.envs as envs
|
|
from vllm.connections import HTTPConnection, global_http_connection
|
|
from vllm.distributed import (get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_gather)
|
|
|
|
from .audio import AudioMediaIO
|
|
from .base import MediaIO
|
|
from .image import ImageEmbeddingMediaIO, ImageMediaIO
|
|
from .inputs import PlaceholderRange
|
|
from .video import VideoMediaIO
|
|
|
|
_M = TypeVar("_M")
|
|
|
|
if TYPE_CHECKING:
|
|
from .hasher import MultiModalHashDict
|
|
from .inputs import MultiModalKwargs, MultiModalPlaceholderDict
|
|
else:
|
|
MultiModalHashDict = Any
|
|
MultiModalKwargs = Any
|
|
MultiModalPlaceholderDict = Any
|
|
|
|
|
|
class MediaConnector:
|
|
|
|
def __init__(
|
|
self,
|
|
media_io_kwargs: Optional[dict[str, dict[str, Any]]] = None,
|
|
connection: HTTPConnection = global_http_connection,
|
|
*,
|
|
allowed_local_media_path: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.media_io_kwargs: dict[str, dict[
|
|
str, Any]] = media_io_kwargs if media_io_kwargs else {}
|
|
self.connection = connection
|
|
|
|
if allowed_local_media_path:
|
|
allowed_local_media_path_ = Path(allowed_local_media_path)
|
|
|
|
if not allowed_local_media_path_.exists():
|
|
raise ValueError(
|
|
"Invalid `--allowed-local-media-path`: The path "
|
|
f"{allowed_local_media_path_} does not exist.")
|
|
if not allowed_local_media_path_.is_dir():
|
|
raise ValueError(
|
|
"Invalid `--allowed-local-media-path`: The path "
|
|
f"{allowed_local_media_path_} must be a directory.")
|
|
else:
|
|
allowed_local_media_path_ = None
|
|
|
|
self.allowed_local_media_path = allowed_local_media_path_
|
|
|
|
def _load_data_url(
|
|
self,
|
|
url_spec: ParseResult,
|
|
media_io: MediaIO[_M],
|
|
) -> _M:
|
|
data_spec, data = url_spec.path.split(",", 1)
|
|
media_type, data_type = data_spec.split(";", 1)
|
|
|
|
if data_type != "base64":
|
|
msg = "Only base64 data URLs are supported for now."
|
|
raise NotImplementedError(msg)
|
|
|
|
return media_io.load_base64(media_type, data)
|
|
|
|
def _load_file_url(
|
|
self,
|
|
url_spec: ParseResult,
|
|
media_io: MediaIO[_M],
|
|
) -> _M:
|
|
allowed_local_media_path = self.allowed_local_media_path
|
|
if allowed_local_media_path is None:
|
|
raise RuntimeError("Cannot load local files without "
|
|
"`--allowed-local-media-path`.")
|
|
|
|
filepath = Path(url_spec.path)
|
|
if allowed_local_media_path not in filepath.resolve().parents:
|
|
raise ValueError(
|
|
f"The file path {filepath} must be a subpath "
|
|
f"of `--allowed-local-media-path` {allowed_local_media_path}.")
|
|
|
|
return media_io.load_file(filepath)
|
|
|
|
def load_from_url(
|
|
self,
|
|
url: str,
|
|
media_io: MediaIO[_M],
|
|
*,
|
|
fetch_timeout: Optional[int] = None,
|
|
) -> _M:
|
|
url_spec = urlparse(url)
|
|
|
|
if url_spec.scheme.startswith("http"):
|
|
connection = self.connection
|
|
data = connection.get_bytes(url, timeout=fetch_timeout)
|
|
|
|
return media_io.load_bytes(data)
|
|
|
|
if url_spec.scheme == "data":
|
|
return self._load_data_url(url_spec, media_io)
|
|
|
|
if url_spec.scheme == "file":
|
|
return self._load_file_url(url_spec, media_io)
|
|
|
|
msg = "The URL must be either a HTTP, data or file URL."
|
|
raise ValueError(msg)
|
|
|
|
async def load_from_url_async(
|
|
self,
|
|
url: str,
|
|
media_io: MediaIO[_M],
|
|
*,
|
|
fetch_timeout: Optional[int] = None,
|
|
) -> _M:
|
|
url_spec = urlparse(url)
|
|
|
|
if url_spec.scheme.startswith("http"):
|
|
connection = self.connection
|
|
data = await connection.async_get_bytes(url, timeout=fetch_timeout)
|
|
|
|
return media_io.load_bytes(data)
|
|
|
|
if url_spec.scheme == "data":
|
|
return self._load_data_url(url_spec, media_io)
|
|
|
|
if url_spec.scheme == "file":
|
|
return self._load_file_url(url_spec, media_io)
|
|
|
|
msg = "The URL must be either a HTTP, data or file URL."
|
|
raise ValueError(msg)
|
|
|
|
def fetch_audio(
|
|
self,
|
|
audio_url: str,
|
|
) -> tuple[np.ndarray, Union[int, float]]:
|
|
"""
|
|
Load audio from a URL.
|
|
"""
|
|
audio_io = AudioMediaIO(**self.media_io_kwargs.get("audio", {}))
|
|
|
|
return self.load_from_url(
|
|
audio_url,
|
|
audio_io,
|
|
fetch_timeout=envs.VLLM_AUDIO_FETCH_TIMEOUT,
|
|
)
|
|
|
|
async def fetch_audio_async(
|
|
self,
|
|
audio_url: str,
|
|
) -> tuple[np.ndarray, Union[int, float]]:
|
|
"""
|
|
Asynchronously fetch audio from a URL.
|
|
"""
|
|
audio_io = AudioMediaIO(**self.media_io_kwargs.get("audio", {}))
|
|
|
|
return await self.load_from_url_async(
|
|
audio_url,
|
|
audio_io,
|
|
fetch_timeout=envs.VLLM_AUDIO_FETCH_TIMEOUT,
|
|
)
|
|
|
|
def fetch_image(
|
|
self,
|
|
image_url: str,
|
|
*,
|
|
image_mode: str = "RGB",
|
|
) -> Image.Image:
|
|
"""
|
|
Load a PIL image from a HTTP or base64 data URL.
|
|
|
|
By default, the image is converted into RGB format.
|
|
"""
|
|
image_io = ImageMediaIO(image_mode=image_mode,
|
|
**self.media_io_kwargs.get("image", {}))
|
|
|
|
try:
|
|
return self.load_from_url(
|
|
image_url,
|
|
image_io,
|
|
fetch_timeout=envs.VLLM_IMAGE_FETCH_TIMEOUT,
|
|
)
|
|
except UnidentifiedImageError as e:
|
|
# convert to ValueError to be properly caught upstream
|
|
raise ValueError(str(e)) from e
|
|
|
|
async def fetch_image_async(
|
|
self,
|
|
image_url: str,
|
|
*,
|
|
image_mode: str = "RGB",
|
|
) -> Image.Image:
|
|
"""
|
|
Asynchronously load a PIL image from a HTTP or base64 data URL.
|
|
|
|
By default, the image is converted into RGB format.
|
|
"""
|
|
image_io = ImageMediaIO(image_mode=image_mode,
|
|
**self.media_io_kwargs.get("image", {}))
|
|
|
|
try:
|
|
return await self.load_from_url_async(
|
|
image_url,
|
|
image_io,
|
|
fetch_timeout=envs.VLLM_IMAGE_FETCH_TIMEOUT,
|
|
)
|
|
except UnidentifiedImageError as e:
|
|
# convert to ValueError to be properly caught upstream
|
|
raise ValueError(str(e)) from e
|
|
|
|
def fetch_video(
|
|
self,
|
|
video_url: str,
|
|
*,
|
|
image_mode: str = "RGB",
|
|
) -> npt.NDArray:
|
|
"""
|
|
Load video from a HTTP or base64 data URL.
|
|
"""
|
|
image_io = ImageMediaIO(image_mode=image_mode,
|
|
**self.media_io_kwargs.get("image", {}))
|
|
video_io = VideoMediaIO(image_io,
|
|
**self.media_io_kwargs.get("video", {}))
|
|
|
|
return self.load_from_url(
|
|
video_url,
|
|
video_io,
|
|
fetch_timeout=envs.VLLM_VIDEO_FETCH_TIMEOUT,
|
|
)
|
|
|
|
async def fetch_video_async(
|
|
self,
|
|
video_url: str,
|
|
*,
|
|
image_mode: str = "RGB",
|
|
) -> npt.NDArray:
|
|
"""
|
|
Asynchronously load video from a HTTP or base64 data URL.
|
|
|
|
By default, the image is converted into RGB format.
|
|
"""
|
|
image_io = ImageMediaIO(image_mode=image_mode,
|
|
**self.media_io_kwargs.get("image", {}))
|
|
video_io = VideoMediaIO(image_io,
|
|
**self.media_io_kwargs.get("video", {}))
|
|
|
|
return await self.load_from_url_async(
|
|
video_url,
|
|
video_io,
|
|
fetch_timeout=envs.VLLM_VIDEO_FETCH_TIMEOUT,
|
|
)
|
|
|
|
def fetch_image_embedding(
|
|
self,
|
|
data: str,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Load image embedding from a URL.
|
|
"""
|
|
image_embedding_io = ImageEmbeddingMediaIO()
|
|
|
|
return image_embedding_io.load_base64("", data)
|
|
|
|
|
|
global_media_connector = MediaConnector()
|
|
"""The global [`MediaConnector`][vllm.multimodal.utils.MediaConnector]
|
|
instance used by vLLM."""
|
|
|
|
fetch_audio = global_media_connector.fetch_audio
|
|
fetch_image = global_media_connector.fetch_image
|
|
fetch_video = global_media_connector.fetch_video
|
|
|
|
|
|
def encode_audio_base64(
|
|
audio: np.ndarray,
|
|
sampling_rate: float,
|
|
) -> str:
|
|
"""Encode audio as base64."""
|
|
audio_io = AudioMediaIO()
|
|
return audio_io.encode_base64((audio, sampling_rate))
|
|
|
|
|
|
def encode_image_base64(
|
|
image: Image.Image,
|
|
*,
|
|
image_mode: str = "RGB",
|
|
format: str = "JPEG",
|
|
) -> str:
|
|
"""
|
|
Encode a pillow image to base64 format.
|
|
|
|
By default, the image is converted into RGB format before being encoded.
|
|
"""
|
|
image_io = ImageMediaIO(image_mode=image_mode)
|
|
return image_io.encode_base64(image, image_format=format)
|
|
|
|
|
|
def encode_video_base64(frames: npt.NDArray) -> str:
|
|
image_io = ImageMediaIO()
|
|
video_io = VideoMediaIO(image_io)
|
|
return video_io.encode_base64(frames)
|
|
|
|
|
|
def merge_and_sort_multimodal_metadata(
|
|
mm_positions: MultiModalPlaceholderDict,
|
|
mm_hashes: Optional[MultiModalHashDict],
|
|
) -> tuple[list[str], list[PlaceholderRange], Optional[list[str]]]:
|
|
"""Given a MultiModalPlaceholderDict, merge all PlaceholderRange
|
|
objects from all available modalities into a single list of
|
|
PlaceholderRange, sorted by their offset (starting index in the input
|
|
sequence) in the ascending order.
|
|
|
|
Optionally if a `MultiModalHashDict` is given, same operation will be
|
|
applied to the object and the sorted list of hashes will be returned.
|
|
|
|
Returns:
|
|
list[str]: List of item modalities in order of their positions in the
|
|
input sequence.
|
|
list[PlaceholderRange]: Sorted list of all PlaceholderRanges from
|
|
mm_positions.
|
|
Optional[list[str]]: Sorted list of all hashes from mm_hashes if given,
|
|
None otherwise.
|
|
"""
|
|
|
|
modalities = list(mm_positions.keys())
|
|
|
|
assert len(modalities) > 0, "No modalities found in the mm_positions."
|
|
|
|
# For single modality, placeholder ranges and hashes are already sorted
|
|
# so we can return the list directly.
|
|
if len(modalities) == 1:
|
|
modality = modalities[0]
|
|
placeholder_list = list(mm_positions[modality])
|
|
|
|
return [modality] * len(
|
|
placeholder_list
|
|
), placeholder_list, None if not mm_hashes else mm_hashes[modality]
|
|
|
|
# Create a list of (modality, placeholder, hash) tuples for all placeholders
|
|
all_items = []
|
|
for modality in modalities:
|
|
placeholder_list = list(mm_positions[modality])
|
|
hash_list: list[Optional[str]] = list(
|
|
mm_hashes[modality]) if mm_hashes and modality in mm_hashes else [
|
|
None
|
|
] * len(placeholder_list)
|
|
|
|
for placeholder, hash_value in zip(placeholder_list, hash_list):
|
|
all_items.append((modality, placeholder, hash_value))
|
|
|
|
# Sort all items by offset
|
|
all_items.sort(key=lambda x: x[1].offset)
|
|
|
|
# Split into separate lists
|
|
sorted_modalities = [item[0] for item in all_items]
|
|
merged_placeholders = [item[1] for item in all_items]
|
|
merged_hashes = [str(item[2])
|
|
for item in all_items] if mm_hashes is not None else None
|
|
|
|
return sorted_modalities, merged_placeholders, merged_hashes
|
|
|
|
|
|
def group_mm_inputs_by_modality(
|
|
mm_inputs: list[MultiModalKwargs]) -> list[list[MultiModalKwargs]]:
|
|
"""Group consecutive MultiModalKwargs from mm_inputs with the same modality
|
|
together into the same list for batching purpose. For MultiModalKwargs with
|
|
multiple modalities, put them into their own list.
|
|
|
|
Args:
|
|
mm_inputs: List of MultiModalKwargs.
|
|
|
|
Returns:
|
|
list[list[vllm.multimodal.MultiModalKwargs]]: List of list of
|
|
`MultiModalKwargs`, each inner list contains consecutive
|
|
`MultiModalKwargs` with same modality.
|
|
"""
|
|
if not mm_inputs:
|
|
return []
|
|
|
|
def modality_group_func(mm_input: MultiModalKwargs) -> Union[str, int]:
|
|
# If the input has multiple modalities, return a id as the unique key
|
|
# for the mm_input input.
|
|
if len(mm_input.modalities) > 1:
|
|
return id(mm_input)
|
|
|
|
elif len(mm_input.modalities) == 1:
|
|
return list(mm_input.modalities)[0]
|
|
|
|
# FIXME(Isotr0py): Modality of mm_input from legacy pipeline is empty,
|
|
# this is used to make InternVL with legacy pipeline still work with v1.
|
|
else:
|
|
return ""
|
|
|
|
return [
|
|
list(group) for _, group in groupby(mm_inputs, key=modality_group_func)
|
|
]
|
|
|
|
|
|
def run_dp_sharded_vision_model(image_input: torch.Tensor,
|
|
vision_model: torch.nn.Module) -> torch.Tensor:
|
|
"""Run a vision model with data parallelism (DP) sharding. The function
|
|
will shard the input image tensor on the first dimension and run the vision
|
|
model
|
|
|
|
Args:
|
|
image_input (torch.Tensor): Image input tensor.
|
|
vision_model (torch.nn.Module): Vision model.
|
|
|
|
Returns:
|
|
torch.Tensor: Output image embeddings
|
|
"""
|
|
|
|
num_chunks = image_input.shape[0]
|
|
mp_world_size = get_tensor_model_parallel_world_size()
|
|
num_chunks_per_rank = (num_chunks + mp_world_size - 1) // mp_world_size
|
|
num_padded_chunks = num_chunks_per_rank * mp_world_size - num_chunks
|
|
pad = (0, ) * (2 * (image_input.dim() - 1)) + (0, num_padded_chunks)
|
|
image_input_padded = torch.nn.functional.pad(image_input, pad)
|
|
rank = get_tensor_model_parallel_rank()
|
|
image_input_per_rank = image_input_padded[rank *
|
|
num_chunks_per_rank:(rank + 1) *
|
|
num_chunks_per_rank, ...]
|
|
|
|
vision_embeddings = vision_model(image_input_per_rank)
|
|
vision_embeddings = tensor_model_parallel_all_gather(vision_embeddings,
|
|
dim=0)
|
|
vision_embeddings = vision_embeddings[:num_chunks, ...]
|
|
return vision_embeddings
|