mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 20:35:01 +08:00
Signed-off-by: Yang Chen <yangche@fb.com> Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com> Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com> Co-authored-by: Yang Chen <yangche@fb.com>
1026 lines
42 KiB
Python
1026 lines
42 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
This file implements common components for MLA implementations.
|
|
|
|
First we define:
|
|
|
|
Sq as Q sequence length
|
|
Skv as KV sequence length
|
|
|
|
MLA has two possible ways of computing, a data-movement friendly approach and a
|
|
compute friendly approach, we generally want to use the compute friendly
|
|
approach for "prefill" (i.e. the ratio Sq / Skv is "small", is near 1)
|
|
and the data-movement friendly approach for "decode" (i.e. the ratio
|
|
Sq / Skv is "large").
|
|
|
|
NOTE what we deem small and large is currently determined by if its labelled
|
|
prefill or decode by the scheduler, but this is something we should probably
|
|
tune.
|
|
|
|
Main reference: DeepseekV2 paper, and FlashInfer Implementation
|
|
(https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551).
|
|
|
|
Deepseek's MLA attention works the following way:
|
|
* Use a single latent vector to represent the per-token entry of the KV cache.
|
|
* For decode (i.e. the memory friendly approach) the attention "simulates" a
|
|
multi-head attention, while the compute is similar to multi-query attention.
|
|
|
|
Below is example of both paths assuming batchsize = 1
|
|
|
|
## More Extent Definitions:
|
|
|
|
C Context length, `Skv - Sq`
|
|
H hidden size
|
|
N number of attention heads
|
|
Lq latent dimension for Q 1536 in DSV3
|
|
Lkv latent dimension for K/V 512 in DSV3
|
|
P nope dimension, no rope. 128 in DSV3
|
|
R rope dimension, goes through rope. 64 in DSV3
|
|
V V head dim. 128 in DSV3
|
|
|
|
## Vector/Matrix Definitions
|
|
|
|
h_t hidden states (input to attention) shape [Sq, H]
|
|
q_c latent/compressed Q shape [Sq, Lq]
|
|
q_nope uncompressed Q (no-rope) shape [Sq, N, P]
|
|
q_pe uncompressed Q (rope) shape [Sq, N, R]
|
|
kv_c latent/compressed KV shape [Skv, Lkv]
|
|
k_pe decoupled k position embeddings shape [Skv, R]
|
|
new_kv_c new kv_c from current iter shape [Sq, Lkv]
|
|
new_k_pe new k_pe from current iter shape [Sq, R]
|
|
cache_kv_c cached k_c from previous iters shape [C, Lkv]
|
|
cache_k_pe cached k_pe from previous iters shape [C, R]
|
|
W_DQ project h_t to q_c shape [H, Lq]
|
|
W_UQ project q_c to q_nope shape [Lq, N * P]
|
|
W_QR project q_c to q_pe shape [Lq, N * R]
|
|
W_DKV project h_t to kv_c shape [H, Lkv]
|
|
W_UK project kv_c to k_nope shape [Lkv, N * P]
|
|
W_KR project h_t to k_pe shape [H, N * R]
|
|
W_UV project kv_c to v shape [Lkv, N * V]
|
|
W_O project v to h_t shape [N * V, H]
|
|
|
|
|
|
## Compute Friendly Approach (i.e. "_forward_prefill"):
|
|
|
|
q_c = h_t @ W_DQ
|
|
q_nope = (q_c @ W_UQ).view(Sq, N, P)
|
|
q_pe = RoPE(q_c @ W_QR).view(Sq, N, R)
|
|
new_kv_c = h_t @ W_DKV
|
|
new_k_pe = RoPE(h_t @ W_KR)
|
|
kv_c = torch.cat([new_kv_c, cache_kv_c], dim=0)
|
|
k_pe = torch.cat([new_k_pe, cache_k_pe], dim=0)
|
|
k_nope = (kv_c @ W_UK).view(Skv, N, P)
|
|
v = (kv_c @ W_UV).view(Skv, N, V)
|
|
|
|
// MHA with QK headdim = P + R
|
|
// V headdim = V
|
|
// spda_o shape [Sq, N, V]
|
|
spda_o = scaled_dot_product_attention(
|
|
torch.cat([q_nope, q_pe], dim=-1),
|
|
torch.cat([k_nope, k_pe.unsqueeze(1).expand(-1, N, -1)], dim=-1),
|
|
v
|
|
)
|
|
return spda_o @ W_O
|
|
|
|
NOTE: in the actual code,
|
|
`kv_b_proj` is [W_UK; W_UV] concatnated per head
|
|
`q_b_proj` is [W_UQ; W_QR] concatnated per head
|
|
`out_proj` is W_O
|
|
|
|
|
|
## Data-Movement Friendly Approach (i.e. "_forward_decode"):
|
|
|
|
Ahead of time, compute:
|
|
|
|
% this projects from q_c to [Sq, N * Lkv]
|
|
W_UQ_UK = einsum("qnp,knp -> qnk"
|
|
W_UQ.view(Lq, N, P), W_UK.view(Lkv, N, P)
|
|
).view(Lkv, N * Lkv)
|
|
% this projects from attn output [Sq, N * Lkv] to [Sq, H]
|
|
W_UV_O = einsum("knv,nvh -> nkh"
|
|
W_UV.view(Lkv, N, V), W_O.view(N, V, H)
|
|
).view(N * Lkv, H)
|
|
|
|
Runtime
|
|
q_c = h_t @ W_DQ
|
|
q_latent = q_c @ W_UQ_UK.view(Sq, N, Lkv)
|
|
q_pe = RoPE(q_c @ W_QR).view(Sq, N, R)
|
|
new_kv_c = h_t @ W_DKV
|
|
new_k_pe = RoPE(h_t @ W_KR)
|
|
kv_c = torch.cat([new_kv_c, cache_kv_c], dim=0)
|
|
k_pe = torch.cat([new_k_pe, cache_k_pe], dim=0)
|
|
|
|
// MQA with QK headdim = Lkv + R
|
|
// V headdim = Lkv
|
|
// spda_o shape [Sq, N, Lkv]
|
|
// NOTE: this is less compute-friendly since Lkv > P
|
|
// but is more data-movement friendly since its MQA vs MHA
|
|
spda_o = scaled_dot_product_attention(
|
|
torch.cat([q_latent, q_pe], dim=-1),
|
|
torch.cat([kv_c, k_pe], dim=-1),
|
|
kv_c
|
|
)
|
|
return spda_o.reshape(-1, N * Lkv) @ W_UV_O
|
|
|
|
|
|
## Chunked Prefill
|
|
|
|
For chunked prefill we want to use the compute friendly algorithm. We are
|
|
assuming sufficiently large Sq / Skv ratio, in the future may want to switch to
|
|
the data-movement friendly approach if the chunk (i.e. `Sq`) is small.
|
|
|
|
However, the compute-friendly approach can potentially run out of memory if Skv
|
|
is large due to: `k_nope = (kv_c @ W_UK).view(Skv, N, P)`
|
|
|
|
To mitigate this, we chunk the computation of attention with respect to the
|
|
current context (i.e. `cache_kv_c` and `cache_k_pe`) so that we can used a
|
|
fixed workspace size.
|
|
|
|
The chunked prefill approach is as follows:
|
|
|
|
MCC Max chunk of context to process per iter, computed dynamically,
|
|
used to bound the memory usage
|
|
|
|
q_c = h_t @ W_DQ
|
|
q_nope = (q_c @ W_UQ).view(Sq, N, P)
|
|
q_pe = RoPE(q_c @ W_QR).view(Sq, N, R)
|
|
new_kv_c = h_t @ W_DKV
|
|
new_k_pe = RoPE(h_t @ W_KR)
|
|
new_k_nope = (new_kv_c @ W_UK).view(Sq, N, P)
|
|
new_v = (new_kv_c @ W_UV).view(Sq, N, V)
|
|
|
|
// MHA between queries and new KV
|
|
// with QK headdim = P + R
|
|
// V headdim = V
|
|
// curr_o shape [Sq, N, V]
|
|
// curr_lse shape [N, Sq], this is just order FA returns
|
|
curr_o, curr_lse = scaled_dot_product_attention(
|
|
torch.cat([q_nope, q_pe], dim=-1),
|
|
torch.cat([new_k_nope, new_k_pe.unsqueeze(1).expand(-1, N, -1)], dim=-1),
|
|
new_v,
|
|
casual=True,
|
|
return_softmax_lse=True
|
|
)
|
|
|
|
// Compute attention with the already existing context
|
|
for chunk_idx in range(cdiv(C, MCC)):
|
|
chunk_start = chunk_idx * MCC
|
|
chunk_end = min(chunk_start + MCC, C)
|
|
Sc = chunk_end - chunk_start
|
|
cache_kv_c_chunk = cache_kv_c[chunk_start:chunk_end]
|
|
cache_k_pe_chunk = cache_k_pe[chunk_start:chunk_end]
|
|
cache_k_nope_chunk = (cache_kv_c_chunk @ W_UK).view(-1, N, P)
|
|
cache_v_chunk = (cache_kv_c_chunk @ W_UV).view(-1, N, V)
|
|
|
|
chunk_o, chunk_lse = scaled_dot_product_attention(
|
|
torch.cat([q_nope, q_pe], dim=-1),
|
|
torch.cat([cache_k_nope_chunk,
|
|
cache_k_pe_chunk.unsqueeze(1).expand(-1, N, -1)],
|
|
dim=-1),
|
|
cache_v_chunk,
|
|
casual=False,
|
|
return_softmax_lse=True
|
|
)
|
|
|
|
curr_o, curr_lse = merge_attn_states(
|
|
suffix_output=curr_o,
|
|
suffix_lse=curr_lse,
|
|
prefix_output=chunk_o,
|
|
prefix_lse=chunk_lse,
|
|
)
|
|
|
|
return curr_o @ W_O
|
|
"""
|
|
|
|
import functools
|
|
from abc import abstractmethod
|
|
from dataclasses import dataclass
|
|
from typing import (TYPE_CHECKING, Any, Dict, Generic, List, Optional, Tuple,
|
|
Type, TypeVar)
|
|
|
|
import torch
|
|
from compressed_tensors.quantization import QuantizationStrategy
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm import envs
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionLayer,
|
|
AttentionMetadata,
|
|
MLAAttentionImpl)
|
|
from vllm.attention.backends.utils import get_flash_attn_version
|
|
from vllm.attention.ops.triton_merge_attn_states import merge_attn_states
|
|
from vllm.distributed import (get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
LinearBase, RowParallelLinear,
|
|
UnquantizedLinearMethod)
|
|
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
|
|
CompressedTensorsLinearMethod)
|
|
from vllm.model_executor.layers.quantization.compressed_tensors.schemes import (
|
|
CompressedTensorsW8A8Fp8)
|
|
from vllm.model_executor.layers.quantization.fp8 import Fp8LinearMethod
|
|
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
|
apply_fp8_linear_generic, current_platform_fp8_dtype, is_fp8)
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
scaled_quantize)
|
|
from vllm.model_executor.layers.rotary_embedding import (
|
|
DeepseekScalingRotaryEmbedding, RotaryEmbedding)
|
|
from vllm.utils import cdiv, round_down
|
|
|
|
try:
|
|
from vllm.vllm_flash_attn import flash_attn_varlen_func
|
|
except ImportError:
|
|
# For rocm use upstream flash attention
|
|
from flash_attn import flash_attn_varlen_func
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.v1.core.scheduler_output import SchedulerOutput
|
|
from vllm.v1.worker.gpu_input_batch import InputBatch
|
|
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class MLACommonBackend(AttentionBackend):
|
|
|
|
accept_output_buffer: bool = True
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "TRITON_MLA_VLLM_V1"
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
|
return MLACommonMetadata
|
|
|
|
@staticmethod
|
|
def get_builder_cls() -> Type["MLACommonMetadataBuilder"]:
|
|
return MLACommonMetadataBuilder
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int, # assumed to be 1 for MLA
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
return (num_blocks, block_size, head_size)
|
|
|
|
@staticmethod
|
|
def get_supported_head_sizes() -> List[int]:
|
|
return [576]
|
|
|
|
@staticmethod
|
|
def use_cascade_attention(*args, **kwargs) -> bool:
|
|
return False
|
|
|
|
|
|
@dataclass
|
|
class MLACommonMetadata:
|
|
"""Metadata for MLACommon.
|
|
|
|
NOTE: Please read the comment at the top of the file before trying to
|
|
understand this class
|
|
"""
|
|
# New for MLA (compared to FlashAttention)
|
|
# Input positions for rotrary embeddings since for MLA the rotary
|
|
# position embeddings are applied inside the attention backend
|
|
input_positions: torch.Tensor
|
|
|
|
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ---------------------|
|
|
# |-- query_len ---|
|
|
|
|
num_actual_tokens: int # Number of tokens excluding padding.
|
|
max_query_len: int
|
|
query_start_loc: torch.Tensor
|
|
max_seq_len: int
|
|
seq_lens: torch.Tensor
|
|
block_table: torch.Tensor
|
|
slot_mapping: torch.Tensor
|
|
|
|
# For logging.
|
|
num_input_tokens: int = 0 # Number of tokens including padding.
|
|
|
|
# The dimension of the attention heads
|
|
head_dim: Optional[int] = None
|
|
|
|
# New for MLA (compared to FlashAttention)
|
|
# For chunked prefill
|
|
num_decodes: Optional[int] = None
|
|
num_decode_tokens: Optional[int] = None
|
|
num_prefills: Optional[int] = None
|
|
has_context: bool = False
|
|
context_chunk_cu_seq_lens: Optional[torch.Tensor] = None
|
|
context_chunk_starts: Optional[torch.Tensor] = None
|
|
context_chunk_seq_tot: Optional[List[int]] = None
|
|
context_chunk_max_seq_lens: Optional[List[int]] = None
|
|
chunked_prefill_workspace: Optional[torch.Tensor] = None
|
|
|
|
def __post_init__(self):
|
|
supported_head_sizes = MLACommonBackend.get_supported_head_sizes()
|
|
if self.head_dim is not None and self.head_dim \
|
|
not in supported_head_sizes:
|
|
raise ValueError(
|
|
f"Only {supported_head_sizes} are supported for head_dim,",
|
|
f"received {self.head_dim}.")
|
|
|
|
|
|
T = TypeVar("T", bound=MLACommonMetadata)
|
|
|
|
|
|
class MLACommonMetadataBuilder(Generic[T]):
|
|
"""
|
|
NOTE: Please read the comment at the top of the file before trying to
|
|
understand this class
|
|
"""
|
|
|
|
def __init__(self,
|
|
runner: "GPUModelRunner",
|
|
cls: Optional[type[T]] = None):
|
|
self.cls = cls if cls is not None else MLACommonMetadata
|
|
self.runner = runner
|
|
scheduler_config = runner.scheduler_config
|
|
model_config = runner.model_config
|
|
cache_config = runner.cache_config
|
|
self.chunked_prefill_enabled = scheduler_config.chunked_prefill_enabled
|
|
|
|
if self.chunked_prefill_enabled:
|
|
self.chunked_prefill_workspace_size = min(
|
|
# Max sure there is enough for 8 full length request or at least
|
|
# 4 pages of cache per request
|
|
max(
|
|
8 * model_config.max_model_len, 4 *
|
|
scheduler_config.max_num_seqs * cache_config.block_size),
|
|
# For long-context models try not to over-allocate limiting
|
|
# kv-cache space, limiting it to 64k tokens,
|
|
# which would result in the workspace being:
|
|
# 2*(576)*(64*1024) = 144mb
|
|
# (assuming 576 MLA head dim, and fp16)
|
|
# which would result in up-projected context being
|
|
# 2*(192*128)*(64*1024) = 3gb
|
|
# (assuming 192 QK head dim, 128 heads, and fp16)
|
|
128 * 1024)
|
|
assert self.chunked_prefill_workspace_size >= \
|
|
scheduler_config.max_num_seqs * cache_config.block_size
|
|
self.chunked_prefill_workspace = torch.empty(
|
|
(self.chunked_prefill_workspace_size,
|
|
model_config.get_head_size()),
|
|
dtype=model_config.dtype,
|
|
device=runner.device,
|
|
)
|
|
self.page_size = self.runner.block_size
|
|
|
|
def reorder_batch(self, input_batch: "InputBatch",
|
|
scheduler_output: "SchedulerOutput"):
|
|
# We now want to reorder the batch so that the "decode" requests are and
|
|
# the front and the "prefill" requests are at the using the least amount
|
|
# swaps possible. (NOTE for now we loosely use "decode" to mean requests
|
|
# where attention is likely memory-bound and "prefill" to mean requests
|
|
# where attention is likely compute-bound, TODO(lucas): figure out a
|
|
# better naming here)
|
|
decodes = []
|
|
prefills = []
|
|
num_decode_tokens = 0
|
|
num_prefill_tokens = 0
|
|
|
|
for i, req_id in enumerate(input_batch.req_ids):
|
|
num_tokens = scheduler_output.num_scheduled_tokens[req_id]
|
|
# for now treat 1 scheduled token as "decode" even if its not,
|
|
# we should update this to something like < 8 in the future but
|
|
# currently the TritonMLA._forward_decode only supports
|
|
# num_tokens = 1
|
|
if num_tokens == 1:
|
|
decodes.append(i)
|
|
num_decode_tokens += num_tokens
|
|
else:
|
|
prefills.append(i)
|
|
num_prefill_tokens += num_tokens
|
|
|
|
# We hope that this is fairly minimal since decodes
|
|
# should be around for a number of iterations so hopefully they are
|
|
# relatively stationary (and new request are generally appended to the
|
|
# persistent batch so already should be at the back)
|
|
# To achieve this we loop over the decodes in descending order and
|
|
# the prefills in ascending order. We swap decodes from the "back"
|
|
# i.e. past where the last decode should be in the reodorered with
|
|
# prefills from the front of the batch.
|
|
# `decodes` and `prefills` are already in ascending order just based on
|
|
# the above loop
|
|
num_decodes = len(decodes)
|
|
num_prefills = len(prefills)
|
|
first_prefill = 0
|
|
|
|
for i in range(1, min(num_decodes, num_prefills) + 1):
|
|
# If the decode is at the "back" of the batch, i, we can swap it
|
|
# with the prefill closest to the front of the batch
|
|
if decodes[num_decodes - i] >= num_decodes:
|
|
input_batch.swap_states(prefills[first_prefill],
|
|
decodes[num_decodes - i])
|
|
first_prefill += 1
|
|
else:
|
|
break
|
|
|
|
# Save for next `build` call
|
|
# TODO(lucas): this is a bit of a hack, we should probably have a
|
|
# better way of doing this
|
|
self._num_decodes = num_decodes
|
|
self._num_prefills = num_prefills
|
|
self._num_decode_tokens = num_decode_tokens
|
|
self._num_prefill_tokens = num_prefill_tokens
|
|
|
|
def build(self, num_reqs: int, num_actual_tokens: int, max_query_len: int,
|
|
common_prefix_len: int) -> T:
|
|
device = self.runner.device
|
|
max_seq_len = self.runner.seq_lens_np[:num_reqs].max()
|
|
query_start_loc = self.runner.query_start_loc_cpu[:num_reqs + 1].to(
|
|
device, non_blocking=True)
|
|
seq_lens = self.runner.seq_lens_cpu[:num_reqs].to(device,
|
|
non_blocking=True)
|
|
block_table = (
|
|
self.runner.input_batch.block_table.get_device_tensor()[:num_reqs])
|
|
slot_mapping = self.runner.slot_mapping_cpu[:num_actual_tokens].to(
|
|
device, non_blocking=True).long()
|
|
input_positions = self.runner.positions_cpu[:num_actual_tokens].to(
|
|
device, non_blocking=True).long()
|
|
|
|
context_chunk_cu_seq_lens = None
|
|
context_chunk_starts = None
|
|
context_chunk_seq_tot = None
|
|
context_chunk_max_seq_lens = None
|
|
|
|
num_computed_tokens_cpu_tensor = \
|
|
self.runner.input_batch.num_computed_tokens_cpu_tensor[:num_reqs]
|
|
context_lens_tensor = \
|
|
num_computed_tokens_cpu_tensor.to(device, non_blocking=True)
|
|
|
|
if self.chunked_prefill_enabled and self._num_prefills > 0 \
|
|
and context_lens_tensor[self._num_decodes:].max() > 0:
|
|
# NOTE: it is recommend you read the `Chunked Prefill` section in
|
|
# the comment at the top of the file before trying to understand
|
|
# the following code
|
|
|
|
self.has_context = True
|
|
|
|
num_prefills_with_context = \
|
|
(context_lens_tensor[self._num_decodes:] > 0).sum().item()
|
|
|
|
# currently we allocate an equal amount of workspace for each
|
|
# prefill in the batch, we could probably use a more advanced
|
|
# algorithm here and allocate more workspace to prefills with
|
|
# longer context lengths
|
|
max_context_chunk = \
|
|
self.chunked_prefill_workspace_size // num_prefills_with_context
|
|
|
|
# align max_context_chunk to page_size by rounding down,
|
|
# currently the `gather_cache` kernel cannot handle
|
|
# `context_chunk_starts` that are not aligned to page_size
|
|
max_context_chunk = round_down(max_context_chunk, self.page_size)
|
|
assert max_context_chunk > 0
|
|
num_chunks = cdiv(context_lens_tensor.max(), max_context_chunk)
|
|
|
|
# if `max_context_chunk = 256`, `num_chunks = 3`, and
|
|
# `num_prefills_with_context = 4`, create a tensor that looks like
|
|
# [[0, 0, 0, 0], [256, 256, 256, 256], [512, 512, 512, 512]]
|
|
context_chunk_starts = \
|
|
torch.arange(num_chunks, device=device, dtype=torch.int32) \
|
|
.unsqueeze(1).expand(-1, self._num_prefills) \
|
|
* max_context_chunk
|
|
chunk_ends = torch.min(context_lens_tensor[self._num_decodes:] \
|
|
.unsqueeze(0), context_chunk_starts + max_context_chunk)
|
|
chunk_seq_lens = (chunk_ends - context_chunk_starts).clamp(min=0)
|
|
_context_chunk_cu_seq_lens = chunk_seq_lens.cumsum(dim=1).to(
|
|
torch.int32)
|
|
zero = torch.zeros(num_chunks, dtype=torch.int32, device=device) \
|
|
.unsqueeze(-1)
|
|
context_chunk_cu_seq_lens = \
|
|
torch.cat([zero, _context_chunk_cu_seq_lens], dim=1)
|
|
context_chunk_max_seq_lens = \
|
|
chunk_seq_lens.max(dim=1).values.tolist()
|
|
context_chunk_seq_tot = chunk_seq_lens.sum(dim=1).tolist()
|
|
assert max(context_chunk_seq_tot) <= \
|
|
self.chunked_prefill_workspace_size
|
|
|
|
return self.cls(
|
|
input_positions=input_positions,
|
|
num_actual_tokens=num_actual_tokens,
|
|
max_query_len=max_query_len,
|
|
query_start_loc=query_start_loc,
|
|
max_seq_len=max_seq_len,
|
|
seq_lens=seq_lens,
|
|
block_table=block_table,
|
|
slot_mapping=slot_mapping,
|
|
head_dim=self.runner.model_config.get_head_size(),
|
|
# MLACommonMetadata Chunk prefill specific
|
|
num_decodes=self._num_decodes,
|
|
num_decode_tokens=self._num_decode_tokens,
|
|
num_prefills=self._num_prefills,
|
|
context_chunk_cu_seq_lens=context_chunk_cu_seq_lens,
|
|
context_chunk_starts=context_chunk_starts,
|
|
context_chunk_seq_tot=context_chunk_seq_tot,
|
|
context_chunk_max_seq_lens=context_chunk_max_seq_lens,
|
|
)
|
|
|
|
|
|
class MLACommonImpl(MLAAttentionImpl[T], Generic[T]):
|
|
"""
|
|
NOTE: Please read the comment at the top of the file before trying to
|
|
understand this class
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[List[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[Dict[str, Any]],
|
|
logits_soft_cap: Optional[float],
|
|
attn_type: str,
|
|
# MLA Specific Arguments
|
|
q_lora_rank: Optional[int],
|
|
kv_lora_rank: int,
|
|
qk_nope_head_dim: int,
|
|
qk_rope_head_dim: int,
|
|
qk_head_dim: int,
|
|
v_head_dim: int,
|
|
rotary_emb: RotaryEmbedding,
|
|
# q_proj should be q_b_proj if q_lora_rank is not None, but from an
|
|
# attention backend perspective we rely on the layer to pass in the
|
|
# correct matrix
|
|
q_proj: ColumnParallelLinear,
|
|
kv_b_proj: ColumnParallelLinear,
|
|
o_proj: RowParallelLinear,
|
|
) -> None:
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
|
|
self.q_lora_rank = q_lora_rank
|
|
self.kv_lora_rank = kv_lora_rank
|
|
self.qk_nope_head_dim = qk_nope_head_dim
|
|
self.qk_rope_head_dim = qk_rope_head_dim
|
|
self.qk_head_dim = qk_head_dim
|
|
self.v_head_dim = v_head_dim
|
|
|
|
self.rotary_emb = rotary_emb
|
|
self.use_yarn_rope = isinstance(rotary_emb,
|
|
DeepseekScalingRotaryEmbedding)
|
|
self.q_proj = q_proj
|
|
self.kv_b_proj = kv_b_proj
|
|
self.o_proj = o_proj
|
|
self.vllm_flash_attn_version = get_flash_attn_version()
|
|
|
|
# Handle the differences between the flash_attn_varlen from flash_attn
|
|
# and the one from vllm_flash_attn. The former is used on RoCM and the
|
|
# latter has an additional parameter to control FA2 vs FA3
|
|
self.flash_attn_varlen_func = flash_attn_varlen_func
|
|
if self.vllm_flash_attn_version is not None:
|
|
self.flash_attn_varlen_func = \
|
|
functools.partial(flash_attn_varlen_func,
|
|
fa_version=self.vllm_flash_attn_version)
|
|
|
|
def _v_up_proj_and_o_proj(self, x):
|
|
if envs.VLLM_MLA_PERFORM_MATRIX_ABSORPTION:
|
|
if is_fp8(self.W_UV_O):
|
|
output_parallel = apply_fp8_linear_generic(
|
|
x.flatten(start_dim=1), self.W_UV_O, self.W_UV_O_scales,
|
|
self.reqaunt_input_group_shape,
|
|
self.reqaunt_weight_group_shape)
|
|
else:
|
|
output_parallel = torch.matmul(x.flatten(start_dim=1),
|
|
self.W_UV_O)
|
|
if self.tp_size > 1:
|
|
output = tensor_model_parallel_all_reduce(output_parallel)
|
|
else:
|
|
output = output_parallel
|
|
return output
|
|
else:
|
|
x = torch.einsum("bnl,lnv->bnv", x, self.W_UV)
|
|
return self.o_proj(x.reshape(-1,
|
|
self.num_heads * self.v_head_dim))[0]
|
|
|
|
def _q_proj_and_k_up_proj(self, x):
|
|
if envs.VLLM_MLA_PERFORM_MATRIX_ABSORPTION:
|
|
if is_fp8(self.W_Q_UK):
|
|
return apply_fp8_linear_generic(
|
|
x, self.W_Q_UK, self.W_Q_UK_scales,
|
|
self.reqaunt_input_group_shape,
|
|
self.reqaunt_weight_group_shape).view(
|
|
-1, self.num_heads, self.kv_lora_rank)
|
|
return torch.matmul(x, self.W_Q_UK)\
|
|
.view(-1, self.num_heads, self.kv_lora_rank)
|
|
else:
|
|
x = torch.matmul(x, self.W_Q)\
|
|
.view(-1, self.num_heads, self.qk_nope_head_dim)
|
|
return torch.einsum("bnp,lnp->bnl", x, self.W_UK)\
|
|
.view(-1, self.num_heads, self.kv_lora_rank)
|
|
|
|
def process_weights_after_loading(self, act_dtype: torch.dtype):
|
|
|
|
# TODO(lucas) This is very gross, we need a more wide scale refactor of
|
|
# all the FP8 code with a more standard way of
|
|
# defining schemes/group-shapes, we should also potentially force
|
|
# quant_methods to support a decompress function
|
|
#
|
|
# returns input_group_shape, weight_group_shape
|
|
def get_scale_group_shapes_for_fp8(layer: LinearBase) -> \
|
|
Tuple[Tuple[int, int], Tuple[int, int]]:
|
|
if isinstance(layer.quant_method, Fp8LinearMethod):
|
|
if layer.quant_method.block_quant:
|
|
weight_block_size = \
|
|
layer.quant_method.quant_config.weight_block_size
|
|
# per-token-group (1, X), block-quantized (X, Y)
|
|
return (1, weight_block_size[-1]), weight_block_size
|
|
else:
|
|
return (-1, -1), (-1, -1) # per-tensor, per-tensor
|
|
elif isinstance(layer.quant_method, CompressedTensorsLinearMethod)\
|
|
and isinstance(layer.scheme, CompressedTensorsW8A8Fp8):
|
|
# this is hacky but we always assume the for
|
|
# CompressedTensorsW8A8Fp8 the input is dynamic per-token
|
|
# we ignore if it is static-per-tensor since we are going to
|
|
# requantize after later anyways
|
|
strategy = layer.scheme.strategy
|
|
if strategy == QuantizationStrategy.TENSOR:
|
|
return (1, -1), (-1, -1) # per-token, per-tensor
|
|
elif strategy == QuantizationStrategy.CHANNEL:
|
|
return (1, -1), (-1, 1) # per-token, per-channel
|
|
else:
|
|
raise NotImplementedError(
|
|
f"QuantizationStrategy.{strategy} is not supported for "
|
|
"fp8 MLA, please run with VLLM_MLA_DISABLE=1")
|
|
else:
|
|
raise NotImplementedError(
|
|
"Can't determine scale group shapes for "
|
|
f"{layer.quant_method}, please run with VLLM_MLA_DISABLE=1"
|
|
)
|
|
|
|
def get_layer_weight(layer):
|
|
if hasattr(layer, "weight"):
|
|
return layer.weight
|
|
elif hasattr(layer, "qweight"):
|
|
return layer.qweight
|
|
else:
|
|
raise AttributeError(
|
|
f"Layer '{layer}' has neither weight nor qweight")
|
|
|
|
def get_and_maybe_dequant_weights(layer: LinearBase):
|
|
if not isinstance(layer.quant_method, UnquantizedLinearMethod):
|
|
# NOTE: This should only be used offline, since it's O(N^3)
|
|
eye = torch.eye(layer.input_size_per_partition,
|
|
dtype=act_dtype,
|
|
device=get_layer_weight(layer).device)
|
|
dequant_weights = layer.quant_method.apply(layer,
|
|
eye,
|
|
bias=None)
|
|
del eye
|
|
# standardize to (output, input)
|
|
return dequant_weights.T
|
|
return layer.weight
|
|
|
|
weight_dtype = get_layer_weight(self.kv_b_proj).dtype
|
|
assert get_layer_weight(self.o_proj).dtype == weight_dtype
|
|
assert get_layer_weight(self.q_proj).dtype == weight_dtype
|
|
|
|
kv_b_proj_weight = get_and_maybe_dequant_weights(self.kv_b_proj).T
|
|
assert kv_b_proj_weight.shape == (
|
|
self.kv_lora_rank,
|
|
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim)), (
|
|
f"{kv_b_proj_weight.shape=}, "
|
|
f"{self.kv_lora_rank=}, "
|
|
f"{self.num_heads=}, "
|
|
f"{self.qk_nope_head_dim=}, "
|
|
f"{self.v_head_dim=}")
|
|
kv_b_proj_weight = kv_b_proj_weight.view(
|
|
self.kv_lora_rank,
|
|
self.num_heads,
|
|
self.qk_nope_head_dim + self.v_head_dim,
|
|
)
|
|
|
|
W_UK, W_UV = kv_b_proj_weight.split(
|
|
[self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
|
|
q_proj_weight = get_and_maybe_dequant_weights(self.q_proj).T\
|
|
.view(-1, self.num_heads, self.qk_head_dim)
|
|
|
|
# can be W_Q or W_UQ depending q_lora_rank, the former if
|
|
# q_lora_rank is None, the latter otherwise. From the Attention backend
|
|
# perspective though we call these both W_Q and rely on the layer
|
|
# to pass in the correct matrix
|
|
W_Q = q_proj_weight[..., :self.qk_nope_head_dim]
|
|
self.W_QR = q_proj_weight[..., self.qk_nope_head_dim:]\
|
|
.flatten(start_dim=1).contiguous()
|
|
|
|
# W_QR is small so for simplicity we dont bother requantizing it
|
|
self.W_QR = self.W_QR.to(act_dtype)
|
|
|
|
if envs.VLLM_MLA_PERFORM_MATRIX_ABSORPTION:
|
|
requantization_enabled = not envs.VLLM_MLA_DISABLE_REQUANTIZATION
|
|
if is_fp8(weight_dtype) and requantization_enabled:
|
|
# This assumes it wise to requantize using the same group shapes
|
|
# (i.e. strategy, per-tensor, per-channel, block etc.) that the
|
|
# weights were originally quantized
|
|
requant_input_group_shape, requant_weight_group_shape = \
|
|
get_scale_group_shapes_for_fp8(self.q_proj)
|
|
assert (requant_input_group_shape, requant_weight_group_shape)\
|
|
== get_scale_group_shapes_for_fp8(self.kv_b_proj)
|
|
assert (requant_input_group_shape, requant_weight_group_shape)\
|
|
== get_scale_group_shapes_for_fp8(self.o_proj)
|
|
self.reqaunt_input_group_shape = requant_input_group_shape
|
|
self.reqaunt_weight_group_shape = requant_weight_group_shape
|
|
|
|
#
|
|
# Perform matrix-absorption following
|
|
# https://github.com/flashinfer-ai/flashinfer/pull/551
|
|
# for decode, as a result we end up with absorbed weights for decode
|
|
# and another copy of raw weights for prefill.
|
|
#
|
|
self.W_UK, self.W_UV = kv_b_proj_weight.split(
|
|
[self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
# We absorb `W_UK` into `W_Q` resulting in either W_Q_UK or W_UQ_UK
|
|
# depending q_lora_rank, the former if q_lora_rank is None, the
|
|
# latter otherwise
|
|
# basically if q_lora_rank is none we are absorbing into q_proj
|
|
# instead of UQ
|
|
W_Q_UK = torch.einsum("qnd,lnd -> qnl", W_Q, W_UK)\
|
|
.flatten(start_dim=1).contiguous()
|
|
|
|
if is_fp8(weight_dtype) and requantization_enabled:
|
|
W_Q_UK, W_Q_UK_scales = scaled_quantize(
|
|
W_Q_UK,
|
|
self.reqaunt_weight_group_shape,
|
|
quant_dtype=current_platform_fp8_dtype)
|
|
# For FP8 save the transpose so we can use
|
|
# `apply_w8a8_block_fp8_linear` directly
|
|
self.W_Q_UK = W_Q_UK.T.contiguous()
|
|
self.W_Q_UK_scales = W_Q_UK_scales.T.contiguous()
|
|
else:
|
|
self.W_Q_UK = W_Q_UK.to(act_dtype)
|
|
|
|
W_O = get_and_maybe_dequant_weights(self.o_proj)\
|
|
.view(-1, self.num_heads, self.v_head_dim)
|
|
W_UV_O = torch.einsum("lnd,hnd -> nlh", W_UV, W_O)\
|
|
.flatten(start_dim=0, end_dim=1).contiguous()
|
|
|
|
if is_fp8(weight_dtype) and requantization_enabled:
|
|
W_UV_O, W_UV_O_scales = scaled_quantize(
|
|
W_UV_O,
|
|
self.reqaunt_weight_group_shape,
|
|
quant_dtype=current_platform_fp8_dtype)
|
|
# For FP8 save the transpose so we can use
|
|
# `apply_w8a8_block_fp8_linear` directly
|
|
self.W_UV_O = W_UV_O.T.contiguous()
|
|
self.W_UV_O_scales = W_UV_O_scales.T.contiguous()
|
|
else:
|
|
self.W_UV_O = W_UV_O.to(act_dtype)
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
else:
|
|
if is_fp8(weight_dtype):
|
|
raise NotImplementedError(
|
|
"Currently fp8 requires matrix absorption")
|
|
|
|
self.W_UV = W_UV
|
|
self.W_UK = W_UK
|
|
self.W_Q = W_Q.flatten(start_dim=1)
|
|
|
|
def _compute_prefill_context(
|
|
self,
|
|
q: torch.Tensor,
|
|
kv_c_and_k_pe_cache: torch.Tensor,
|
|
attn_metadata: MLACommonMetadata,
|
|
):
|
|
assert attn_metadata.num_prefills is not None
|
|
assert attn_metadata.context_chunk_seq_tot is not None
|
|
assert attn_metadata.context_chunk_cu_seq_lens is not None
|
|
assert attn_metadata.context_chunk_starts is not None
|
|
assert attn_metadata.context_chunk_max_seq_lens is not None
|
|
|
|
output = None
|
|
iters = len(attn_metadata.context_chunk_seq_tot)
|
|
|
|
assert attn_metadata.chunked_prefill_workspace is not None
|
|
workspace = attn_metadata.chunked_prefill_workspace
|
|
|
|
for i in range(iters):
|
|
toks = attn_metadata.context_chunk_seq_tot[i]
|
|
|
|
ops.gather_cache(
|
|
src_cache=kv_c_and_k_pe_cache,
|
|
dst=workspace,
|
|
block_table=attn_metadata.block_table,
|
|
cu_seq_lens=attn_metadata.context_chunk_cu_seq_lens[i],
|
|
batch_size=attn_metadata.num_prefills,
|
|
seq_starts=attn_metadata.context_chunk_starts[i],
|
|
)
|
|
|
|
kv_c_normed = workspace[:toks]\
|
|
[..., :self.kv_lora_rank].unsqueeze(1)
|
|
k_pe = workspace[:toks]\
|
|
[..., self.kv_lora_rank:].unsqueeze(1)
|
|
|
|
kv_nope = self.kv_b_proj(kv_c_normed)[0].view( \
|
|
-1, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
|
k_nope, v = kv_nope\
|
|
.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
|
|
k = torch.cat((k_nope, k_pe.expand((*k_nope.shape[:-1], -1))),
|
|
dim=-1)
|
|
|
|
# For MLA the v head dim is smaller than qk head dim so we pad
|
|
# out v with 0s to match the qk head dim
|
|
v_padded = torch.nn.functional.pad(v,
|
|
[0, q.shape[-1] - v.shape[-1]],
|
|
value=0)
|
|
|
|
attn_output, attn_softmax_lse = self.flash_attn_varlen_func(
|
|
q=q,
|
|
k=k,
|
|
v=v_padded,
|
|
cu_seqlens_q=attn_metadata.query_start_loc,
|
|
cu_seqlens_k=attn_metadata.context_chunk_cu_seq_lens[i],
|
|
max_seqlen_q=attn_metadata.max_query_len,
|
|
max_seqlen_k=attn_metadata.context_chunk_max_seq_lens[i],
|
|
softmax_scale=self.scale,
|
|
causal=False, # Context is unmasked
|
|
return_softmax_lse=True,
|
|
)
|
|
|
|
if output is None:
|
|
output = attn_output
|
|
output_lse = attn_softmax_lse
|
|
else:
|
|
output_tmp = torch.empty_like(output)
|
|
output_lse_tmp = torch.empty_like(output_lse)
|
|
merge_attn_states(
|
|
output=output_tmp,
|
|
output_lse=output_lse_tmp,
|
|
prefix_output=output,
|
|
prefix_lse=output_lse,
|
|
suffix_output=attn_output,
|
|
suffix_lse=attn_softmax_lse,
|
|
)
|
|
output = output_tmp
|
|
output_lse = output_lse_tmp
|
|
|
|
return output, output_lse
|
|
|
|
def _forward_prefill(
|
|
self,
|
|
q: torch.Tensor,
|
|
kv_c_normed: torch.Tensor,
|
|
k_pe: torch.Tensor,
|
|
kv_c_and_k_pe_cache: torch.Tensor,
|
|
attn_metadata: MLACommonMetadata,
|
|
) -> torch.Tensor:
|
|
has_context = attn_metadata.has_context
|
|
kv_nope = self.kv_b_proj(kv_c_normed)[0].view(\
|
|
-1, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
|
k_nope, v = kv_nope\
|
|
.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
|
|
k = torch.cat((k_nope, k_pe.expand((*k_nope.shape[:-1], -1))), dim=-1)
|
|
|
|
# For MLA the v head dim is smaller than qk head dim so we pad out
|
|
# v with 0s to match the qk head dim
|
|
v_padded = torch.nn.functional.pad(v, [0, q.shape[-1] - v.shape[-1]],
|
|
value=0)
|
|
|
|
output = self.flash_attn_varlen_func(
|
|
q=q,
|
|
k=k,
|
|
v=v_padded,
|
|
cu_seqlens_q=attn_metadata.query_start_loc,
|
|
cu_seqlens_k=attn_metadata.query_start_loc,
|
|
max_seqlen_q=attn_metadata.max_query_len,
|
|
max_seqlen_k=attn_metadata.max_seq_len,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
return_softmax_lse=has_context,
|
|
)
|
|
|
|
if has_context:
|
|
suffix_output, suffix_lse = output
|
|
context_output, context_lse = self._compute_prefill_context( \
|
|
q, kv_c_and_k_pe_cache, attn_metadata)
|
|
|
|
output = torch.empty_like(suffix_output)
|
|
merge_attn_states(
|
|
output=output,
|
|
prefix_output=context_output,
|
|
prefix_lse=context_lse,
|
|
suffix_output=suffix_output,
|
|
suffix_lse=suffix_lse,
|
|
)
|
|
|
|
# slice by `:v.shape[-1]` in order to remove v headdim padding
|
|
output = output\
|
|
.view(-1, self.num_heads, q.shape[-1])[..., :v.shape[-1]]\
|
|
.reshape(-1, self.num_heads * v.shape[-1])
|
|
|
|
return self.o_proj(output)[0]
|
|
|
|
@abstractmethod
|
|
def _forward_decode(
|
|
self,
|
|
q_nope: torch.Tensor,
|
|
q_pe: torch.Tensor,
|
|
kv_c_and_k_pe_cache: torch.Tensor,
|
|
attn_metadata: T,
|
|
) -> torch.Tensor:
|
|
raise NotImplementedError
|
|
|
|
def forward(
|
|
self,
|
|
layer: AttentionLayer,
|
|
hidden_states_or_q_c: torch.Tensor, # query in unified attn
|
|
k_c_normed: torch.Tensor, # key in unified attn
|
|
k_pe: torch.Tensor, # value in unified attn
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: T,
|
|
output: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
|
|
assert output is not None, "Output tensor must be provided."
|
|
|
|
if attn_metadata is None:
|
|
# Profiling run.
|
|
return output
|
|
|
|
num_actual_toks = attn_metadata.num_actual_tokens
|
|
|
|
# Inputs and outputs may be padded for CUDA graphs
|
|
output_padded = output
|
|
output = output[:num_actual_toks, ...]
|
|
hidden_states_or_q_c = hidden_states_or_q_c[:num_actual_toks, ...]
|
|
k_c_normed = k_c_normed[:num_actual_toks, ...]
|
|
k_pe = k_pe[:num_actual_toks, ...]
|
|
|
|
# Restore head dim (for rotary embedding)
|
|
k_pe = k_pe.unsqueeze(1)
|
|
assert hasattr(attn_metadata, "input_positions")
|
|
|
|
assert attn_metadata.num_decodes is not None and \
|
|
attn_metadata.num_prefills is not None and \
|
|
attn_metadata.num_decode_tokens is not None
|
|
|
|
has_decode = attn_metadata.num_decodes > 0
|
|
has_prefill = attn_metadata.num_prefills > 0
|
|
num_decode_tokens = attn_metadata.num_decode_tokens
|
|
|
|
decode_hs_or_q_c = hidden_states_or_q_c[:num_decode_tokens]
|
|
decode_k_pe = k_pe[:num_decode_tokens]
|
|
decode_input_positions = \
|
|
attn_metadata.input_positions[:num_decode_tokens]
|
|
|
|
prefill_hs_or_q_c = hidden_states_or_q_c[num_decode_tokens:]
|
|
prefill_k_pe = k_pe[num_decode_tokens:]
|
|
prefill_input_positions = \
|
|
attn_metadata.input_positions[num_decode_tokens:]
|
|
prefill_k_c_normed = k_c_normed[num_decode_tokens:]
|
|
|
|
if has_decode:
|
|
decode_q_nope = self._q_proj_and_k_up_proj(decode_hs_or_q_c)
|
|
decode_q_pe = torch.matmul(decode_hs_or_q_c, self.W_QR)\
|
|
.view(-1, self.num_heads, self.qk_rope_head_dim)
|
|
decode_q_pe[...], decode_k_pe[...] = self.rotary_emb(
|
|
decode_input_positions, decode_q_pe, decode_k_pe)
|
|
|
|
if has_prefill:
|
|
prefill_q = self.q_proj(prefill_hs_or_q_c)[0]\
|
|
.view(-1, self.num_heads, self.qk_head_dim)
|
|
prefill_q_pe = prefill_q[..., self.qk_nope_head_dim:]
|
|
prefill_q_pe[...], prefill_k_pe[...] = self.rotary_emb(
|
|
prefill_input_positions, prefill_q_pe, prefill_k_pe)
|
|
|
|
# write the latent and rope to kv cache
|
|
if kv_cache.numel() > 0:
|
|
ops.concat_and_cache_mla(
|
|
k_c_normed,
|
|
k_pe.squeeze(1),
|
|
kv_cache,
|
|
attn_metadata.slot_mapping.flatten(),
|
|
kv_cache_dtype=self.kv_cache_dtype,
|
|
scale=layer._k_scale,
|
|
)
|
|
|
|
if has_prefill:
|
|
output[num_decode_tokens:] = self._forward_prefill(
|
|
prefill_q, prefill_k_c_normed, prefill_k_pe, kv_cache,
|
|
attn_metadata)
|
|
|
|
if has_decode:
|
|
output[:num_decode_tokens] = self._forward_decode(
|
|
decode_q_nope, decode_q_pe, kv_cache, attn_metadata)
|
|
|
|
return output_padded
|