mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 09:35:50 +08:00
Currently we need to call rotary embedding kernel for each LoRA, which makes it hard to serve multiple long context length LoRA. Add batched rotary embedding kernel and pipe it through. It replaces the rotary embedding layer to the one that is aware of multiple cos-sin-cache per scaling factors. Follow up of https://github.com/vllm-project/vllm/pull/3095/files
293 lines
11 KiB
Python
293 lines
11 KiB
Python
import ast
|
|
from typing import List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import vllm
|
|
from vllm import SamplingParams
|
|
from vllm.lora.layers import LinearScalingRotaryEmbeddingWithLora
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.model_executor.layers.rotary_embedding import (
|
|
LinearScalingRotaryEmbedding)
|
|
|
|
from .data.long_context_test_data import prompts_and_responses
|
|
|
|
context_len_to_scaling_factor = {
|
|
"16k": 4,
|
|
"32k": 8,
|
|
}
|
|
|
|
# We use the same sampling params for all requests
|
|
sampling_params = SamplingParams(
|
|
temperature=0,
|
|
max_tokens=100,
|
|
)
|
|
|
|
|
|
def _create_lora_request(lora_id, long_context_infos):
|
|
context_len = long_context_infos[lora_id]["context_length"]
|
|
scaling_factor = context_len_to_scaling_factor[context_len]
|
|
return LoRARequest(context_len, lora_id,
|
|
long_context_infos[lora_id]["lora"],
|
|
4096 * scaling_factor)
|
|
|
|
|
|
def evaluate_json_response(model_response, golden_response):
|
|
"""Evaluates the model response against the golden response.
|
|
|
|
Returns a score between 0 and 1, where 1 is a perfect match and 0 is no
|
|
match. The score quantifies how well the model is able to extract the
|
|
golden JSON from the long context.
|
|
"""
|
|
try:
|
|
model_response = ast.literal_eval(model_response)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
f"Model response is not a valid JSON. Expected {golden_response}, "
|
|
f"got {model_response}") from e
|
|
|
|
# Normally, we would flatten the dictionary and compare the values, but in
|
|
# this case, we know that the dictionary is only 2 levels deep
|
|
positive_values = 0
|
|
total_values = 0
|
|
# We look at all the attributes of the person that we are extracting a
|
|
# biography of and copmare them to the golden response
|
|
for person_attribute, person_attribute_value in golden_response.items():
|
|
if person_attribute in model_response:
|
|
if isinstance(person_attribute_value, dict):
|
|
for (sub_attribute,
|
|
sub_attribute_value) in person_attribute_value.items():
|
|
total_values += 1
|
|
if sub_attribute in model_response[
|
|
person_attribute] and model_response[
|
|
person_attribute][
|
|
sub_attribute] == sub_attribute_value:
|
|
positive_values += 1
|
|
else:
|
|
total_values += 1
|
|
if model_response[person_attribute] == person_attribute_value:
|
|
positive_values += 1
|
|
else:
|
|
# We count a missing sub-dict as a single missed value.
|
|
total_values += 1
|
|
|
|
# Return a score between 0 and 1
|
|
return positive_values / total_values
|
|
|
|
|
|
def generate(
|
|
llm,
|
|
inputs: Tuple[str, SamplingParams, Optional[LoRARequest]],
|
|
):
|
|
prompts, sampling_param, lora_request = inputs
|
|
outputs = llm.generate(prompts, sampling_param, lora_request=lora_request)
|
|
return outputs[0].outputs[0].text.strip()
|
|
|
|
|
|
def batched_generate(
|
|
llm,
|
|
inputs: List[Tuple[str, SamplingParams, Optional[LoRARequest]]],
|
|
):
|
|
for input in inputs:
|
|
prompt, sampling_param, lora_req = input
|
|
requests_data = llm._validate_and_prepare_requests(
|
|
prompt,
|
|
sampling_param,
|
|
lora_request=lora_req,
|
|
)
|
|
|
|
# Add requests to the engine and run the engine
|
|
for request_data in requests_data:
|
|
llm._add_request(**request_data)
|
|
outputs = llm._run_engine(use_tqdm=True)
|
|
return [outputs[i].outputs[0].text.strip() for i in range(len(outputs))]
|
|
|
|
|
|
@pytest.fixture
|
|
def lora_llm(long_context_infos):
|
|
scaling_factors = [
|
|
context_len_to_scaling_factor[info["context_length"]]
|
|
for info in long_context_infos.values()
|
|
]
|
|
|
|
llm = vllm.LLM(
|
|
"meta-llama/Llama-2-13b-chat-hf",
|
|
enable_lora=True,
|
|
max_num_seqs=16,
|
|
max_loras=2,
|
|
long_lora_scaling_factors=tuple(scaling_factors),
|
|
max_num_batched_tokens=4096 * 8,
|
|
tensor_parallel_size=4,
|
|
)
|
|
yield llm
|
|
del llm
|
|
|
|
|
|
def test_rotary_emb_replaced(dist_init):
|
|
"""Verify rotary emb in all the layers are replaced"""
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
from vllm.worker.model_runner import ModelRunner
|
|
engine_args = EngineArgs("meta-llama/Llama-2-7b-hf",
|
|
long_lora_scaling_factors=(4.0, ),
|
|
enable_lora=True)
|
|
engine_config = engine_args.create_engine_config()
|
|
model_runner = ModelRunner(
|
|
model_config=engine_config.model_config,
|
|
parallel_config=engine_config.parallel_config,
|
|
scheduler_config=engine_config.scheduler_config,
|
|
device_config=engine_config.device_config,
|
|
cache_config=engine_config.cache_config,
|
|
load_config=engine_config.load_config,
|
|
lora_config=engine_config.lora_config,
|
|
is_driver_worker=True,
|
|
)
|
|
model_runner.load_model()
|
|
rotary_emb_count = 0
|
|
for module_name, module in model_runner.model.named_modules(
|
|
remove_duplicate=False):
|
|
if "rotary_emb" in module_name:
|
|
if "base_layer" not in module_name:
|
|
rotary_emb_count += 1
|
|
assert isinstance(module, LinearScalingRotaryEmbeddingWithLora)
|
|
else:
|
|
assert isinstance(module, LinearScalingRotaryEmbedding)
|
|
# Llama 2 has 32 layers.
|
|
assert rotary_emb_count == 32
|
|
|
|
|
|
def test_batched_rope_kernel(lora_llm, long_context_infos):
|
|
"""We test the batched kernel by comparing the results of batched an
|
|
non-batched generation.
|
|
"""
|
|
# Create non batched results first to compare against batched results
|
|
non_batched_results = []
|
|
|
|
for lora_id, info in long_context_infos.items():
|
|
context_len = info["context_length"]
|
|
lora_prompt = (prompts_and_responses[context_len][0]["prompt"],
|
|
sampling_params,
|
|
_create_lora_request(lora_id, long_context_infos))
|
|
lora_output = generate(lora_llm, lora_prompt)
|
|
non_batched_results.append(lora_output)
|
|
|
|
# Create batched results
|
|
# Each element of the batch must be
|
|
# (prompt, prompt_sampling_params, prompt_lora_request)
|
|
batched_prompts = []
|
|
for lora_id, info in long_context_infos.items():
|
|
context_len = info["context_length"]
|
|
batched_prompts.extend([
|
|
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
|
|
_create_lora_request(lora_id, long_context_infos))
|
|
])
|
|
batched_results = batched_generate(lora_llm, batched_prompts)
|
|
|
|
# Results should be the same
|
|
for non_batched, batched in zip(non_batched_results, batched_results):
|
|
assert non_batched == batched, (
|
|
"Non batched and batched results should be the "
|
|
f"same:\n{batched}\n{non_batched}")
|
|
|
|
|
|
def test_self_consistency(lora_llm, long_context_infos):
|
|
"""We test consistency of the batched kernel by permuting batched
|
|
inputs and comparing the results to the non-permuted batched results.
|
|
"""
|
|
num_loras = len(long_context_infos)
|
|
|
|
# Create results in order of long_context_infos
|
|
batched_prompts = []
|
|
for lora_id, info in long_context_infos.items():
|
|
context_len = info["context_length"]
|
|
batched_prompts.extend([
|
|
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
|
|
_create_lora_request(lora_id, long_context_infos))
|
|
])
|
|
|
|
batched_results = batched_generate(lora_llm, batched_prompts)
|
|
|
|
permutation = np.random.default_rng(seed=42).permutation(num_loras)
|
|
|
|
# Create results in random order of permutation
|
|
batched_prompts = []
|
|
for i in permutation:
|
|
lora_id, info = list(long_context_infos.items())[i]
|
|
context_len = info["context_length"]
|
|
batched_prompts.extend([
|
|
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
|
|
_create_lora_request(lora_id, long_context_infos))
|
|
])
|
|
|
|
permutated_batched_results = batched_generate(lora_llm, batched_prompts)
|
|
|
|
# Results should be the same
|
|
for i in range(num_loras):
|
|
assert batched_results[i] == permutated_batched_results[
|
|
permutation[i]], (
|
|
f"Results should be the same:\n{batched_results[i]}"
|
|
f"\n{permutated_batched_results[permutation[i]]}")
|
|
|
|
|
|
def test_quality(lora_llm, long_context_infos):
|
|
"""We test the quality of the answers given by the LoRA model by
|
|
comparing the generated text to the merged model's outputs.
|
|
|
|
This is effectively a mini-benchmark over four prompts.
|
|
If this test fails, this indicates that the quality of the LoRA model
|
|
is suboptimal compared to the merged model. For example, if the model
|
|
does not output valid dictionaries, this test will fail.
|
|
|
|
If needed for testing, the merged versions of the models are available
|
|
as part of the `conftest`.
|
|
|
|
The test is expected to run for about 1 minute on a p4de.24xlarge
|
|
instance.
|
|
"""
|
|
scores = []
|
|
for lora_id, info in long_context_infos.items():
|
|
context_len = info["context_length"]
|
|
for prompt_and_response in prompts_and_responses[context_len]:
|
|
lora_prompt = (prompt_and_response["prompt"], sampling_params,
|
|
_create_lora_request(lora_id, long_context_infos))
|
|
response = generate(lora_llm, lora_prompt)
|
|
golden_answer = prompt_and_response["golden_answer"]
|
|
score = evaluate_json_response(response, golden_answer)
|
|
scores.append(score)
|
|
assert score > 0.3, ("Quality of the answer is not good enough. "
|
|
f"Expected {golden_answer}, got {response}")
|
|
assert np.mean(scores) > 0.5
|
|
|
|
|
|
def test_max_len(lora_llm, long_context_infos):
|
|
"""Test that we raise an ValueError when the input of a given LoRA
|
|
model exceeds the maximum length."""
|
|
# Since each LoRA model has a different maximum length, we need to
|
|
# test each one separately
|
|
for lora_id, info in long_context_infos.items():
|
|
context_len = info["context_length"]
|
|
lora_request = _create_lora_request(lora_id, long_context_infos)
|
|
# Good prompt should be fine
|
|
good_prompt = prompts_and_responses[context_len][0]["prompt"]
|
|
generate(lora_llm, (good_prompt, sampling_params, lora_request))
|
|
# Bad prompt should raise an error
|
|
bad_prompt = good_prompt * 2
|
|
with pytest.raises(ValueError):
|
|
generate(lora_llm, (bad_prompt, sampling_params, lora_request))
|
|
|
|
# Also test batched
|
|
batched_prompts = []
|
|
for lora_id_with_bad_inputs in long_context_infos:
|
|
for lora_id, info in long_context_infos.items():
|
|
context_len = info["context_length"]
|
|
batched_prompts.extend([
|
|
(prompts_and_responses[context_len][0]["prompt"] *
|
|
(2 if lora_id == lora_id_with_bad_inputs else 1),
|
|
sampling_params,
|
|
_create_lora_request(lora_id, long_context_infos))
|
|
])
|
|
# Turn good prompt into bad prompt inside of batched prompts
|
|
|
|
with pytest.raises(ValueError):
|
|
batched_generate(lora_llm, batched_prompts)
|