wang.yuqi 2eb4fe9129
[examples] Resettle pooling examples. (#29365)
Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-12-02 15:54:28 +00:00

55 lines
1.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from https://huggingface.co/boltuix/NeuroBERT-NER
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils.argparse_utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(
model="boltuix/NeuroBERT-NER",
runner="pooling",
enforce_eager=True,
trust_remote_code=True,
)
return parser.parse_args()
def main(args: Namespace):
# Sample prompts.
prompts = [
"Barack Obama visited Microsoft headquarters in Seattle on January 2025."
]
# Create an LLM.
llm = LLM(**vars(args))
tokenizer = llm.get_tokenizer()
label_map = llm.llm_engine.vllm_config.model_config.hf_config.id2label
# Run inference
outputs = llm.encode(prompts, pooling_task="token_classify")
for prompt, output in zip(prompts, outputs):
logits = output.outputs.data
predictions = logits.argmax(dim=-1)
# Map predictions to labels
tokens = tokenizer.convert_ids_to_tokens(output.prompt_token_ids)
labels = [label_map[p.item()] for p in predictions]
# Print results
for token, label in zip(tokens, labels):
if token not in tokenizer.all_special_tokens:
print(f"{token:15}{label}")
if __name__ == "__main__":
args = parse_args()
main(args)