mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 02:15:01 +08:00
Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io> Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
72 lines
2.1 KiB
Python
72 lines
2.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# Adapted from https://huggingface.co/boltuix/NeuroBERT-NER
|
|
|
|
"""
|
|
Example online usage of Pooling API for Named Entity Recognition (NER).
|
|
|
|
Run `vllm serve <model> --runner pooling`
|
|
to start up the server in vLLM. e.g.
|
|
|
|
vllm serve boltuix/NeuroBERT-NER
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import requests
|
|
import torch
|
|
|
|
|
|
def post_http_request(prompt: dict, api_url: str) -> requests.Response:
|
|
headers = {"User-Agent": "Test Client"}
|
|
response = requests.post(api_url, headers=headers, json=prompt)
|
|
return response
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--host", type=str, default="localhost")
|
|
parser.add_argument("--port", type=int, default=8000)
|
|
parser.add_argument("--model", type=str, default="boltuix/NeuroBERT-NER")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def main(args):
|
|
from transformers import AutoConfig, AutoTokenizer
|
|
|
|
api_url = f"http://{args.host}:{args.port}/pooling"
|
|
model_name = args.model
|
|
|
|
# Load tokenizer and config
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
label_map = config.id2label
|
|
|
|
# Input text
|
|
text = "Barack Obama visited Microsoft headquarters in Seattle on January 2025."
|
|
prompt = {"model": model_name, "input": text}
|
|
|
|
pooling_response = post_http_request(prompt=prompt, api_url=api_url)
|
|
|
|
# Run inference
|
|
output = pooling_response.json()["data"][0]
|
|
logits = torch.tensor(output["data"])
|
|
predictions = logits.argmax(dim=-1)
|
|
inputs = tokenizer(text, return_tensors="pt")
|
|
|
|
# Map predictions to labels
|
|
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
|
labels = [label_map[p.item()] for p in predictions]
|
|
assert len(tokens) == len(predictions)
|
|
|
|
# Print results
|
|
for token, label in zip(tokens, labels):
|
|
if token not in tokenizer.all_special_tokens:
|
|
print(f"{token:15} → {label}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|