mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-11 06:14:29 +08:00
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com> Co-authored-by: Yuan Zhou <yuan.zhou@intel.com>
155 lines
6.0 KiB
Python
155 lines
6.0 KiB
Python
import os
|
|
from typing import Dict, List, Optional
|
|
|
|
import torch
|
|
|
|
from vllm.config import (CacheConfig, DeviceConfig, LoRAConfig, ModelConfig,
|
|
ParallelConfig, SchedulerConfig)
|
|
from vllm.executor.executor_base import ExecutorBase
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
|
|
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class CPUExecutor(ExecutorBase):
|
|
|
|
def __init__(self, model_config: ModelConfig, cache_config: CacheConfig,
|
|
parallel_config: ParallelConfig,
|
|
scheduler_config: SchedulerConfig,
|
|
device_config: DeviceConfig,
|
|
lora_config: Optional[LoRAConfig], *args, **kwargs) -> None:
|
|
assert device_config.device_type == "cpu"
|
|
assert lora_config is None, "cpu backend doesn't support LoRA"
|
|
model_config = _verify_and_get_model_config(model_config)
|
|
cache_config = _verify_and_get_cache_config(cache_config)
|
|
|
|
self.model_config = model_config
|
|
self.cache_config = cache_config
|
|
self.lora_config = lora_config
|
|
self.parallel_config = parallel_config
|
|
self.scheduler_config = scheduler_config
|
|
self.device_config = device_config
|
|
|
|
# Instantiate the worker and load the model to CPU.
|
|
self._init_worker()
|
|
self._init_cache()
|
|
|
|
def _init_worker(self):
|
|
from vllm.worker.cpu_worker import CPUWorker
|
|
|
|
assert self.parallel_config.world_size == 1, (
|
|
"CPUExecutor only supports single CPU socket currently.")
|
|
|
|
distributed_init_method = get_distributed_init_method(
|
|
get_ip(), get_open_port())
|
|
self.driver_worker = CPUWorker(
|
|
self.model_config,
|
|
self.parallel_config,
|
|
self.scheduler_config,
|
|
self.device_config,
|
|
local_rank=0,
|
|
rank=0,
|
|
distributed_init_method=distributed_init_method,
|
|
lora_config=self.lora_config,
|
|
kv_cache_dtype=self.cache_config.cache_dtype,
|
|
is_driver_worker=True,
|
|
)
|
|
self.driver_worker.init_device()
|
|
self.driver_worker.load_model()
|
|
|
|
def _init_cache(self) -> None:
|
|
num_cpu_blocks = self.driver_worker.get_cpu_cache_block_num(
|
|
block_size=self.cache_config.block_size,
|
|
cache_space=self.cache_config.cpu_kvcache_space_bytes,
|
|
cache_dtype=self.cache_config.cache_dtype,
|
|
)
|
|
|
|
logger.info(f"# CPU blocks: {num_cpu_blocks}")
|
|
if num_cpu_blocks <= 0:
|
|
raise ValueError("No available memory for the cache blocks. "
|
|
"Try increasing `VLLM_CPU_KVCACHE_SPACE` when "
|
|
"initializing the engine.")
|
|
|
|
max_seq_len = self.cache_config.block_size * num_cpu_blocks
|
|
if self.model_config.max_model_len > max_seq_len:
|
|
raise ValueError(
|
|
f"The model's max seq len ({self.model_config.max_model_len}) "
|
|
"is larger than the maximum number of tokens that can be "
|
|
f"stored in KV cache ({max_seq_len}). Try increasing "
|
|
"`VLLM_CPU_KVCACHE_SPACE` or decreasing `max_model_len` when "
|
|
"initializing the engine.")
|
|
|
|
# Note: To reuse the cache management procedure,
|
|
# use cpu cache as 'gpu cache'.
|
|
self.cache_config.num_gpu_blocks = num_cpu_blocks # type: ignore
|
|
self.cache_config.num_cpu_blocks = 0 # type: ignore
|
|
|
|
# Initialize the cache.
|
|
self.driver_worker.init_cache_engine(cache_config=self.cache_config)
|
|
|
|
def execute_model(self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
blocks_to_swap_in: Dict[int, int],
|
|
blocks_to_swap_out: Dict[int, int],
|
|
blocks_to_copy: Dict[int, List[int]]) -> SamplerOutput:
|
|
output = self.driver_worker.execute_model(
|
|
seq_group_metadata_list=seq_group_metadata_list,
|
|
blocks_to_swap_in=blocks_to_swap_in,
|
|
blocks_to_swap_out=blocks_to_swap_out,
|
|
blocks_to_copy=blocks_to_copy,
|
|
)
|
|
return output
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
raise NotImplementedError("LoRA is not implemented for cpu backend.")
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
raise NotImplementedError("LoRA is not implemented for cpu backend.")
|
|
|
|
def list_loras(self) -> List[int]:
|
|
raise NotImplementedError("LoRA is not implemented for cpu backend.")
|
|
|
|
def check_health(self) -> None:
|
|
# CPUExecutor will always be healthy as long as
|
|
# it's running.
|
|
return
|
|
|
|
|
|
def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
|
|
if config.dtype == torch.float16:
|
|
logger.warning("float16 is not supported on CPU, casting to bfloat16.")
|
|
config.dtype = torch.bfloat16
|
|
if not config.enforce_eager:
|
|
logger.warning(
|
|
"CUDA graph is not supported on CPU, fallback to the eager "
|
|
"mode.")
|
|
config.enforce_eager = True
|
|
return config
|
|
|
|
|
|
def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
|
|
_GB = 1 << 30
|
|
if config.enable_prefix_caching:
|
|
logger.warning("Prefix caching is not supported on CPU, disable it.")
|
|
config.enable_prefix_caching = False
|
|
|
|
kv_cache_space_str = os.getenv("VLLM_CPU_KVCACHE_SPACE", "0")
|
|
kv_cache_space = int(kv_cache_space_str)
|
|
|
|
if kv_cache_space >= 0:
|
|
if kv_cache_space == 0:
|
|
config.cpu_kvcache_space_bytes = 4 * _GB # type: ignore
|
|
logger.warning("Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
|
|
"for CPU backend is not set, using 4 by default.")
|
|
else:
|
|
config.cpu_kvcache_space_bytes = kv_cache_space * _GB # type: ignore
|
|
else:
|
|
raise RuntimeError(
|
|
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
|
|
f" {kv_cache_space}, expect a positive integer value.")
|
|
|
|
return config
|