vllm/vllm/v1/sample/rejection_sampler.py
Nick Hill 30172b4947
[V1] Optimize handling of sampling metadata and req_ids list (#13244)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-02-18 12:15:33 -08:00

192 lines
8.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pad_sequence
from vllm import envs
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.v1.outputs import SamplerOutput
from vllm.v1.sample.metadata import SamplingMetadata
try:
import flashinfer.sampling as fs
is_flashinfer_available = True
except ImportError:
is_flashinfer_available = False
logger = init_logger(__name__)
INVALID_TOKEN_ID = -1
class RejectionSampler(nn.Module):
def __init__(self):
super().__init__()
if current_platform.is_cuda:
if is_flashinfer_available:
if envs.VLLM_USE_FLASHINFER_SAMPLER is not False:
# NOTE(woosuk): The V0 sampler doesn't use FlashInfer for
# sampling unless VLLM_USE_FLASHINFER_SAMPLER=1 (i.e., by
# default it is unused). For backward compatibility, we set
# `VLLM_USE_FLASHINFER_SAMPLER` as None by default and
# interpret it differently in V0 and V1 samplers: In V0,
# None means False, while in V1, None means True. This is
# why we use the condition
# `envs.VLLM_USE_FLASHINFER_SAMPLER is not False` here.
logger.info("Using FlashInfer for rejection sampling.")
self.forward_method = self.flashinfer_sample
else:
logger.warning(
"FlashInfer is available, but it is not enabled. "
"Falling back to the PyTorch-native implementation of "
"rejection sampling. For the best performance, "
"please set VLLM_USE_FLASHINFER_SAMPLER=1.")
self.forward_method = self.forward_native
else:
logger.warning(
"FlashInfer is not available. Falling back to the PyTorch-"
"native implementation of rejection sampling. For the "
"best performance, please install FlashInfer.")
self.forward_method = self.forward_native
else:
self.forward_method = self.forward_native
def forward(self, logits: torch.Tensor,
sampling_metadata: SamplingMetadata) -> SamplerOutput:
if not sampling_metadata.all_greedy:
raise NotImplementedError(
"Currently, only greedy sampling is supported by "
"rejection sampler.")
return self.forward_method(logits, sampling_metadata)
def flashinfer_sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
# NOTE: The following input preparationg can be moved
# to the model runner with a persistent manner for better
# performance.
assert sampling_metadata.spec_token_ids is not None
spec_token_ids = sampling_metadata.spec_token_ids
max_spec_len = max(len(s) for s in spec_token_ids)
batch_size = len(spec_token_ids)
draft_token_ids = torch.full((batch_size, max_spec_len),
INVALID_TOKEN_ID,
device="cpu",
dtype=torch.long)
target_token_ids = torch.full((batch_size, max_spec_len + 1),
fill_value=INVALID_TOKEN_ID,
device=logits.device,
dtype=torch.long)
# TODO: Vectorize the following loop for better performance.
start_loc = 0
for i in range(batch_size):
num_spec_tokens = len(spec_token_ids[i])
draft_token_ids[i, :num_spec_tokens] = torch.tensor(
spec_token_ids[i], device="cpu", dtype=torch.long)
end_loc = start_loc + num_spec_tokens + 1
# Assume greedy sampling.
target_token_ids[i, :num_spec_tokens + 1] = torch.argmax(
logits[start_loc:end_loc], dim=-1)
start_loc = end_loc
vocab_size = logits.size(-1)
# NOTE: CPU <-> GPU synchronization happens here.
draft_token_ids = draft_token_ids.to(logits.device)
draft_probs = _create_greedy_token_probs(draft_token_ids, vocab_size,
logits.device)
target_probs = _create_greedy_token_probs(target_token_ids, vocab_size,
logits.device)
uniform_samples = torch.zeros(batch_size,
max_spec_len + 1,
device=logits.device)
sampled_token_ids, _, _ = fs.chain_speculative_sampling(
draft_probs,
draft_token_ids,
uniform_samples,
target_probs,
)
return SamplerOutput(sampled_token_ids=sampled_token_ids,
logprobs_tensors=None)
# TODO: The following method can be optimized for better performance.
def forward_native(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
assert sampling_metadata.spec_token_ids is not None
spec_lens = [len(x) for x in sampling_metadata.spec_token_ids]
# Add 1 to include the 'bonus' token.
sample_lens = [x + 1 for x in spec_lens]
output_token_ids = logits.argmax(dim=-1).view(-1)
output_token_ids = output_token_ids.split(sample_lens)
output_token_ids = pad_sequence(output_token_ids,
batch_first=True,
padding_value=INVALID_TOKEN_ID)
# Convert spec token IDs to a tensor, split by sample_lens, then pad.
spec_token_ids = [
torch.tensor(x,
dtype=output_token_ids.dtype,
device=output_token_ids.device)
for x in sampling_metadata.spec_token_ids
]
spec_token_ids = pad_sequence(spec_token_ids,
batch_first=True,
padding_value=INVALID_TOKEN_ID)
# Produce a mask that remains 1 (True) until the first
# mismatch (cumprod turns 0 after a mismatch).
accept_mask = (output_token_ids[:, :-1] == spec_token_ids).cumprod(
dim=1)
# Identify valid positions (non-padding).
valid_mask = output_token_ids != INVALID_TOKEN_ID
# Generate mask with bonus token.
generate_mask = torch.cat([
accept_mask,
torch.zeros(accept_mask.size(0), 1, device=accept_mask.device)
],
dim=1).to(torch.bool) & valid_mask
zeros_mask = (generate_mask == 0)
first_zero_idx = zeros_mask.float().argmax(dim=1)
# Figure out which rows actually contain at least one zero.
rows_with_zero = zeros_mask.any(dim=1)
# Use indexing to set the first zero in each of those rows to 1.
generate_mask[rows_with_zero, first_zero_idx[rows_with_zero]] = 1
output_token_ids[~generate_mask] = INVALID_TOKEN_ID
return SamplerOutput(sampled_token_ids=output_token_ids,
logprobs_tensors=None)
def _create_greedy_token_probs(
token_ids: torch.Tensor,
vocab_size: int,
out_device: torch.device,
) -> torch.Tensor:
batch_size, num_tokens = token_ids.shape
token_probs = torch.zeros(batch_size,
num_tokens,
vocab_size,
dtype=torch.float,
device=out_device)
# Ignore INVALID_TOKEN_ID.
valid_mask = (token_ids != INVALID_TOKEN_ID)
valid_indices = token_ids.clone()
valid_indices[~valid_mask] = 0
token_probs.scatter_(dim=2,
index=valid_indices.unsqueeze(-1),
src=valid_mask.unsqueeze(-1).float())
return token_probs