vllm/vllm/v1/request.py
Snehlata e15601789b
[Feature]: Add corrupted request metric to V1 metrics system. (#27306)
Signed-off-by: atalhens <sneh.lata@nutanix.com>
2025-11-05 13:45:29 -08:00

245 lines
8.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import enum
import time
from collections.abc import Callable, Mapping
from functools import partial
from typing import TYPE_CHECKING, Any, Optional
import torch
from vllm.multimodal.inputs import MultiModalFeatureSpec
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams
from vllm.utils import length_from_prompt_token_ids_or_embeds
from vllm.v1.engine import (
EngineCoreEvent,
EngineCoreEventType,
EngineCoreRequest,
FinishReason,
)
from vllm.v1.structured_output.request import StructuredOutputRequest
from vllm.v1.utils import ConstantList
if TYPE_CHECKING:
from vllm.lora.request import LoRARequest
from vllm.v1.core.kv_cache_utils import BlockHash
class Request:
def __init__(
self,
request_id: str,
prompt_token_ids: list[int] | None,
sampling_params: SamplingParams | None,
pooling_params: PoolingParams | None,
eos_token_id: int | None,
client_index: int = 0,
arrival_time: float | None = None,
prompt_embeds: torch.Tensor | None = None,
mm_features: list[MultiModalFeatureSpec] | None = None,
lora_request: Optional["LoRARequest"] = None,
cache_salt: str | None = None,
priority: int = 0,
trace_headers: Mapping[str, str] | None = None,
block_hasher: Callable[["Request"], list["BlockHash"]] | None = None,
) -> None:
self.request_id = request_id
self.client_index = client_index
self.priority = priority
self.sampling_params = sampling_params
self.pooling_params = pooling_params
# Because of LoRA, the eos token id can be different for each request.
self.eos_token_id = eos_token_id
self.lora_request = lora_request
self.structured_output_request = StructuredOutputRequest.from_sampling_params(
sampling_params
)
self.arrival_time = arrival_time if arrival_time is not None else time.time()
self.status = RequestStatus.WAITING
self.events: list[EngineCoreEvent] = []
self.stop_reason: int | str | None = None
# P/D: Connector-specific KV transfer parameters.
self.kv_transfer_params: dict[str, Any] | None = None
if pooling_params is not None:
# Pooling models.
self.max_tokens = 1
elif sampling_params is not None:
# Generative models.
assert sampling_params.max_tokens is not None
self.max_tokens = sampling_params.max_tokens
if self.structured_output_request is not None:
self.status = RequestStatus.WAITING_FOR_FSM
if sampling_params.extra_args is not None:
self.kv_transfer_params = sampling_params.extra_args.get(
"kv_transfer_params"
)
else:
raise ValueError("sampling_params and pooling_params can't both be unset")
self.prompt_token_ids = prompt_token_ids
self.prompt_embeds = prompt_embeds
self.num_prompt_tokens = length_from_prompt_token_ids_or_embeds(
prompt_token_ids, prompt_embeds
)
self._output_token_ids: list[int] = []
self._all_token_ids: list[int] = (
self.prompt_token_ids.copy()
if self.prompt_token_ids is not None
else [0] * self.num_prompt_tokens
)
self.num_output_placeholders = 0 # Used in async scheduling.
self.spec_token_ids: list[int] = []
self.num_computed_tokens = 0
self.cache_salt: str | None = cache_salt
# Multi-modal related
self.mm_features = mm_features or []
self.num_encoder_inputs = len(self.mm_features)
self.has_encoder_inputs = self.num_encoder_inputs > 0
# Read-only views
# Prevent directly appending to these lists since
# they should also be updated simultaneously.
self.output_token_ids = ConstantList(self._output_token_ids)
self.all_token_ids = ConstantList(self._all_token_ids)
# trace_headers
self.trace_headers = trace_headers
# State
# The number of tokens with prefix cache hits.
self.num_cached_tokens = -1
# The number of NaNs in logits. A value greater than 0
# indicates that the output is corrupted
self.num_nans_in_logits = 0
# The number of requests being preempted by the scheduler
self.num_preemptions = 0
self.block_hashes: list[BlockHash] = []
self.get_hash_new_full_blocks: Callable[[], list[BlockHash]] | None = None
if block_hasher is not None:
self.get_hash_new_full_blocks = partial(block_hasher, self)
self.block_hashes = self.get_hash_new_full_blocks()
@classmethod
def from_engine_core_request(
cls,
request: EngineCoreRequest,
block_hasher: Callable[["Request"], list["BlockHash"]] | None,
) -> "Request":
return cls(
request_id=request.request_id,
client_index=request.client_index,
prompt_token_ids=request.prompt_token_ids,
prompt_embeds=request.prompt_embeds,
mm_features=request.mm_features,
sampling_params=request.sampling_params,
pooling_params=request.pooling_params,
eos_token_id=request.eos_token_id,
arrival_time=request.arrival_time,
lora_request=request.lora_request,
cache_salt=request.cache_salt,
priority=request.priority,
trace_headers=request.trace_headers,
block_hasher=block_hasher,
)
def append_output_token_ids(
self,
token_ids: int | list[int],
) -> None:
if isinstance(token_ids, int):
self._output_token_ids.append(token_ids)
self._all_token_ids.append(token_ids)
else:
self._output_token_ids.extend(token_ids)
self._all_token_ids.extend(token_ids)
if self.get_hash_new_full_blocks is not None:
self.block_hashes.extend(self.get_hash_new_full_blocks())
@property
def use_structured_output(self) -> bool:
return self.structured_output_request is not None
@property
def num_tokens(self) -> int:
return len(self._all_token_ids)
@property
def num_tokens_with_spec(self) -> int:
return len(self._all_token_ids) + len(self.spec_token_ids)
@property
def num_output_tokens(self) -> int:
return len(self._output_token_ids)
def is_finished(self) -> bool:
return RequestStatus.is_finished(self.status)
def get_finished_reason(self) -> FinishReason | None:
return RequestStatus.get_finished_reason(self.status)
def get_num_encoder_tokens(self, input_id: int) -> int:
assert input_id < len(self.mm_features)
num_tokens = self.mm_features[input_id].mm_position.length
return num_tokens
def record_event(
self,
event_type: EngineCoreEventType,
timestamp: float | None = None,
) -> None:
self.events.append(EngineCoreEvent.new_event(event_type, timestamp))
def take_events(self) -> list[EngineCoreEvent] | None:
if not self.events:
return None
events, self.events = self.events, []
return events
class RequestStatus(enum.IntEnum):
"""Status of a request."""
WAITING = enum.auto()
WAITING_FOR_FSM = enum.auto()
WAITING_FOR_REMOTE_KVS = enum.auto()
RUNNING = enum.auto()
PREEMPTED = enum.auto()
# Note: anything after PREEMPTED will be considered
# as a finished status.
FINISHED_STOPPED = enum.auto()
FINISHED_LENGTH_CAPPED = enum.auto()
FINISHED_ABORTED = enum.auto()
FINISHED_IGNORED = enum.auto()
def __str__(self):
return self.name
@staticmethod
def is_finished(status: "RequestStatus") -> bool:
return status > RequestStatus.PREEMPTED
@staticmethod
def get_finished_reason(status: "RequestStatus") -> FinishReason | None:
return _FINISHED_REASON_MAP.get(status)
# Mapping of finished statuses to their finish reasons.
# NOTE: The ignored requests are the requests whose prompt lengths
# are longer than the model's length cap. Therefore, the stop
# reason should also be "length" as in OpenAI API.
_FINISHED_REASON_MAP = {
RequestStatus.FINISHED_STOPPED: FinishReason.STOP,
RequestStatus.FINISHED_LENGTH_CAPPED: FinishReason.LENGTH,
RequestStatus.FINISHED_ABORTED: FinishReason.ABORT,
RequestStatus.FINISHED_IGNORED: FinishReason.LENGTH,
}