vllm/vllm/v1/worker/gpu/cudagraph_utils.py
Woosuk Kwon 30b44a1598
GPU Model Runner V2 (#25266)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-11-21 08:20:55 -08:00

199 lines
6.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
from contextlib import contextmanager
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from vllm.config import VllmConfig
from vllm.config.compilation import CUDAGraphMode
from vllm.distributed.parallel_state import graph_capture, is_global_first_rank
from vllm.forward_context import set_forward_context
from vllm.v1.attention.backends.utils import AttentionMetadataBuilder
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.kv_cache_interface import KVCacheConfig
from vllm.v1.worker.gpu.attn_utils import build_attn_metadata
from vllm.v1.worker.gpu.block_table import BlockTables
from vllm.v1.worker.gpu.input_batch import InputBuffers
class CudaGraphManager:
def __init__(
self,
vllm_config: VllmConfig,
device: torch.device,
):
self.vllm_config = vllm_config
self.device = device
self.max_model_len = vllm_config.model_config.max_model_len
self.dp_size = vllm_config.parallel_config.data_parallel_size
self.compilation_config = vllm_config.compilation_config
assert self.compilation_config is not None
self.cudagraph_mode = self.compilation_config.cudagraph_mode
self.cudagraph_sizes = sorted(self.compilation_config.cudagraph_capture_sizes)
self.padded_sizes = self._init_padded_sizes()
self.graphs: dict[int, torch.cuda.CUDAGraph] = {}
self.pool = torch.cuda.graph_pool_handle()
self.hidden_states: torch.Tensor | None = None
def _init_padded_sizes(self) -> dict[int, int]:
if not self.cudagraph_mode.has_full_cudagraphs():
# Full cuda graphs are not used.
return {}
padded_sizes: dict[int, int] = {}
assert len(self.cudagraph_sizes) > 0
for i in range(1, self.cudagraph_sizes[-1] + 1):
for x in self.cudagraph_sizes:
if i <= x:
padded_sizes[i] = x
break
return padded_sizes
def needs_capture(self) -> bool:
return len(self.padded_sizes) > 0
def get_cudagraph_size(
self,
scheduler_output: SchedulerOutput,
num_tokens_after_padding: int,
) -> int | None:
if not self.cudagraph_mode.has_full_cudagraphs():
return None
if self.cudagraph_mode != CUDAGraphMode.FULL:
# TODO(woosuk): Support uniform decode with multiple tokens (spec decoding).
all_decode = all(
x == 1 for x in scheduler_output.num_scheduled_tokens.values()
)
if not all_decode:
# Prefill is included.
return None
return self.padded_sizes.get(num_tokens_after_padding)
def capture_graph(
self,
batch_size: int,
model: nn.Module,
input_buffers: InputBuffers,
block_tables: BlockTables,
attn_metadata_builders: list[AttentionMetadataBuilder],
kv_cache_config: KVCacheConfig,
) -> None:
assert batch_size not in self.graphs
# Prepare dummy inputs.
input_ids = input_buffers.input_ids.gpu[:batch_size]
positions = input_buffers.positions.gpu[:batch_size]
input_buffers.query_start_loc.np[: batch_size + 1] = np.arange(batch_size + 1)
input_buffers.query_start_loc.np[batch_size:] = batch_size
input_buffers.query_start_loc.copy_to_gpu()
input_buffers.seq_lens.np[:batch_size] = self.max_model_len
input_buffers.seq_lens.np[batch_size:] = 0
input_buffers.seq_lens.copy_to_gpu()
input_block_tables = [x[:batch_size] for x in block_tables.input_block_tables]
slot_mappings = block_tables.slot_mappings[:, :batch_size]
attn_metadata = build_attn_metadata(
attn_metadata_builders=attn_metadata_builders,
num_reqs=batch_size,
num_tokens=batch_size,
query_start_loc=input_buffers.query_start_loc,
seq_lens=input_buffers.seq_lens,
num_computed_tokens_cpu=None, # FIXME
block_tables=input_block_tables,
slot_mappings=slot_mappings,
kv_cache_config=kv_cache_config,
)
if self.dp_size > 1:
num_tokens_across_dp = torch.full(
(self.dp_size,),
batch_size,
dtype=torch.int32,
device="cpu",
)
else:
num_tokens_across_dp = None
# Warm up.
with set_forward_context(
attn_metadata,
self.vllm_config,
num_tokens=batch_size,
num_tokens_across_dp=num_tokens_across_dp,
):
hidden_states = model(
input_ids=input_ids,
positions=positions,
)
if self.hidden_states is None:
self.hidden_states = torch.empty_like(hidden_states)
torch.cuda.synchronize()
# Capture the graph.
graph = torch.cuda.CUDAGraph()
with (
set_forward_context(
attn_metadata,
self.vllm_config,
num_tokens=batch_size,
num_tokens_across_dp=num_tokens_across_dp,
),
torch.cuda.graph(graph, self.pool),
):
hidden_states = model(
input_ids=input_ids,
positions=positions,
)
self.hidden_states[:batch_size] = hidden_states
self.graphs[batch_size] = graph
@torch.inference_mode()
def capture(
self,
model: nn.Module,
input_buffers: InputBuffers,
block_tables: BlockTables,
attn_metadata_builders: list[AttentionMetadataBuilder],
kv_cache_config: KVCacheConfig,
) -> None:
assert self.needs_capture()
# Capture larger graphs first.
sizes_to_capture = sorted(self.cudagraph_sizes, reverse=True)
if is_global_first_rank():
sizes_to_capture = tqdm(sizes_to_capture, desc="Capturing CUDA graphs")
with freeze_gc(), graph_capture(device=self.device):
for batch_size in sizes_to_capture:
self.capture_graph(
batch_size,
model,
input_buffers,
block_tables,
attn_metadata_builders,
kv_cache_config,
)
def run(self, batch_size: int) -> torch.Tensor:
assert batch_size in self.graphs
self.graphs[batch_size].replay()
assert self.hidden_states is not None
return self.hidden_states[:batch_size]
@contextmanager
def freeze_gc():
gc.collect()
gc.freeze()
try:
yield
finally:
gc.unfreeze()