vllm/vllm/transformers_utils/tokenizer_base.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

156 lines
3.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import importlib
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any
if TYPE_CHECKING:
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
class TokenizerBase(ABC):
@property
@abstractmethod
def all_special_tokens_extended(self) -> list[str]:
raise NotImplementedError()
@property
@abstractmethod
def all_special_tokens(self) -> list[str]:
raise NotImplementedError()
@property
@abstractmethod
def all_special_ids(self) -> list[int]:
raise NotImplementedError()
@property
@abstractmethod
def bos_token_id(self) -> int:
raise NotImplementedError()
@property
@abstractmethod
def eos_token_id(self) -> int:
raise NotImplementedError()
@property
@abstractmethod
def sep_token(self) -> str:
raise NotImplementedError()
@property
@abstractmethod
def pad_token(self) -> str:
raise NotImplementedError()
@property
@abstractmethod
def is_fast(self) -> bool:
raise NotImplementedError()
@property
@abstractmethod
def vocab_size(self) -> int:
raise NotImplementedError()
@property
@abstractmethod
def max_token_id(self) -> int:
raise NotImplementedError()
@property
@abstractmethod
def truncation_side(self) -> str:
raise NotImplementedError()
def __len__(self) -> int:
return self.vocab_size
@abstractmethod
def __call__(
self,
text: str | list[str] | list[int],
text_pair: str | None = None,
add_special_tokens: bool = False,
truncation: bool = False,
max_length: int | None = None,
):
raise NotImplementedError()
@abstractmethod
def get_vocab(self) -> dict[str, int]:
raise NotImplementedError()
@abstractmethod
def get_added_vocab(self) -> dict[str, int]:
raise NotImplementedError()
@abstractmethod
def encode_one(
self,
text: str,
truncation: bool = False,
max_length: int | None = None,
) -> list[int]:
raise NotImplementedError()
@abstractmethod
def encode(
self,
text: str,
truncation: bool | None = None,
max_length: int | None = None,
add_special_tokens: bool | None = None,
) -> list[int]:
raise NotImplementedError()
@abstractmethod
def apply_chat_template(
self,
messages: list["ChatCompletionMessageParam"],
tools: list[dict[str, Any]] | None = None,
**kwargs,
) -> list[int]:
raise NotImplementedError()
@abstractmethod
def convert_tokens_to_string(self, tokens: list[str]) -> str:
raise NotImplementedError()
@abstractmethod
def decode(self, ids: list[int] | int, skip_special_tokens: bool = True) -> str:
raise NotImplementedError()
@abstractmethod
def convert_ids_to_tokens(
self,
ids: list[int],
skip_special_tokens: bool = True,
) -> list[str]:
raise NotImplementedError()
class TokenizerRegistry:
# Tokenizer name -> (tokenizer module, tokenizer class)
REGISTRY: dict[str, tuple[str, str]] = {}
@staticmethod
def register(name: str, module: str, class_name: str) -> None:
TokenizerRegistry.REGISTRY[name] = (module, class_name)
@staticmethod
def get_tokenizer(
tokenizer_name: str,
*args,
**kwargs,
) -> TokenizerBase:
tokenizer_cls = TokenizerRegistry.REGISTRY.get(tokenizer_name)
if tokenizer_cls is None:
raise ValueError(f"Tokenizer {tokenizer_name} not found.")
tokenizer_module = importlib.import_module(tokenizer_cls[0])
class_ = getattr(tokenizer_module, tokenizer_cls[1])
return class_.from_pretrained(*args, **kwargs)