mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 00:24:59 +08:00
229 lines
8.4 KiB
Python
229 lines
8.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""A layer that samples the next tokens from the model's outputs."""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.v1.outputs import LogprobsTensors, SamplerOutput
|
|
from vllm.v1.sample.metadata import SamplingMetadata
|
|
from vllm.v1.sample.ops.penalties import (apply_all_penalties,
|
|
apply_min_token_penalties)
|
|
from vllm.v1.sample.ops.topk_topp_sampler import TopKTopPSampler
|
|
from vllm.v1.sample.rejection_sampler import RejectionSampler
|
|
|
|
_SAMPLING_EPS = 1e-5
|
|
|
|
|
|
class Sampler(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.topk_topp_sampler = TopKTopPSampler()
|
|
self.rejection_sampler = RejectionSampler()
|
|
|
|
def forward(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> SamplerOutput:
|
|
if sampling_metadata.spec_token_ids:
|
|
if sampling_metadata.max_num_logprobs:
|
|
raise NotImplementedError(
|
|
"Rejection sampling does not support logprobs.")
|
|
return self.rejection_sampler(
|
|
logits,
|
|
sampling_metadata,
|
|
)
|
|
|
|
# NOTE(woosuk): Use the original logits (before any penalties or
|
|
# temperature scaling) for the top-k logprobs.
|
|
# This is different from the V0 sampler, which uses the logits that
|
|
# is used for sampling (after penalties and temperature scaling).
|
|
# TODO(rob): provide option for logprobs post sampling.
|
|
# See https://vllm-dev.slack.com/archives/C07UUL8E61Z/p1735907856007919 # noqa: E501
|
|
num_logprobs = sampling_metadata.max_num_logprobs
|
|
if num_logprobs is not None:
|
|
raw_logprobs = self.compute_logprobs(logits)
|
|
|
|
# Use float32 for the logits.
|
|
logits = logits.to(torch.float32)
|
|
# Apply logits bias.
|
|
logits = self.apply_logits_bias(logits, sampling_metadata)
|
|
# Apply penalties (e.g., min_tokens, freq_penalties).
|
|
logits = self.apply_penalties(logits, sampling_metadata)
|
|
# Sample the next token.
|
|
sampled = self.sample(logits, sampling_metadata)
|
|
|
|
# Gather the logprobs of the topk and sampled token (if requested).
|
|
# Get logprobs and rank tensors (if requested)
|
|
logprobs_tensors = None if num_logprobs is None else \
|
|
self.gather_logprobs(raw_logprobs, num_logprobs, token_ids=sampled)
|
|
|
|
# Use int32 to reduce the tensor size.
|
|
sampled = sampled.to(torch.int32)
|
|
|
|
# These are GPU tensors.
|
|
sampler_output = SamplerOutput(
|
|
# The sampled tokens are expanded to 2D tensor with shape
|
|
# [num_requests, 1], where each row represents one generated
|
|
# token per request.
|
|
sampled_token_ids=sampled.unsqueeze(-1),
|
|
logprobs_tensors=logprobs_tensors,
|
|
)
|
|
return sampler_output
|
|
|
|
def apply_temperature(
|
|
self,
|
|
logits: torch.Tensor,
|
|
temp: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# Use in-place division to avoid creating a new tensor.
|
|
return logits.div_(temp.unsqueeze(dim=1))
|
|
|
|
def greedy_sample(self, logits: torch.Tensor) -> torch.Tensor:
|
|
return logits.argmax(dim=-1).view(-1)
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> torch.Tensor:
|
|
assert not (sampling_metadata.all_greedy
|
|
and sampling_metadata.all_random)
|
|
if sampling_metadata.all_random:
|
|
greedy_sampled = None
|
|
else:
|
|
greedy_sampled = self.greedy_sample(logits)
|
|
if sampling_metadata.all_greedy:
|
|
return greedy_sampled
|
|
|
|
assert sampling_metadata.temperature is not None
|
|
|
|
# Apply temperature.
|
|
logits = self.apply_temperature(logits, sampling_metadata.temperature)
|
|
|
|
# Apply min_p.
|
|
if sampling_metadata.min_p is not None:
|
|
logits = self.apply_min_p(logits, sampling_metadata.min_p)
|
|
|
|
# Apply top_k and/or top_p.
|
|
random_sampled = self.topk_topp_sampler(
|
|
logits,
|
|
sampling_metadata.generators,
|
|
sampling_metadata.top_k,
|
|
sampling_metadata.top_p,
|
|
)
|
|
|
|
if greedy_sampled is None:
|
|
return random_sampled
|
|
|
|
sampled = torch.where(
|
|
sampling_metadata.temperature < _SAMPLING_EPS,
|
|
greedy_sampled,
|
|
random_sampled,
|
|
out=greedy_sampled, # Reuse tensor
|
|
)
|
|
return sampled
|
|
|
|
def compute_logprobs(self, logits: torch.Tensor) -> torch.Tensor:
|
|
return logits.log_softmax(dim=-1, dtype=torch.float32)
|
|
|
|
def gather_logprobs(
|
|
self,
|
|
logprobs: torch.Tensor,
|
|
num_logprobs: int,
|
|
token_ids: torch.Tensor,
|
|
) -> LogprobsTensors:
|
|
"""
|
|
Gather logprobs for topk and sampled/prompt token.
|
|
|
|
Args:
|
|
logits: (num tokens) x (vocab) tensor
|
|
num_logprobs: minimum number of logprobs to
|
|
retain per token
|
|
token_ids: prompt tokens (if prompt logprobs)
|
|
or sampled tokens (if sampled
|
|
logprobs); 1D token ID tensor
|
|
with (num tokens) elements
|
|
|
|
Returns:
|
|
Top-k int indices tensor, (num tokens) x (num_logprobs + 1)
|
|
Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1)
|
|
Sampled token rank tensor, (num tokens)
|
|
"""
|
|
# Find the topK values.
|
|
topk_logprobs, topk_indices = torch.topk(logprobs,
|
|
num_logprobs,
|
|
dim=-1)
|
|
|
|
# Get with the logprob of the prompt or sampled token.
|
|
token_ids = token_ids.unsqueeze(-1)
|
|
token_logprobs = logprobs.gather(-1, token_ids)
|
|
|
|
# Compute the ranks of the actual token.
|
|
token_ranks = (logprobs >= token_logprobs).sum(-1)
|
|
|
|
# Concatenate together with the topk.
|
|
indices = torch.cat((token_ids, topk_indices), dim=1)
|
|
logprobs = torch.cat((token_logprobs, topk_logprobs), dim=1)
|
|
|
|
# Use int32 to reduce the tensor size.
|
|
indices = indices.to(torch.int32)
|
|
|
|
return LogprobsTensors(indices, logprobs, token_ranks)
|
|
|
|
def apply_penalties(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> torch.Tensor:
|
|
if sampling_metadata.min_tokens:
|
|
apply_min_token_penalties(logits,
|
|
sampling_metadata.output_token_ids,
|
|
sampling_metadata.min_tokens)
|
|
if not sampling_metadata.no_penalties:
|
|
assert sampling_metadata.prompt_token_ids is not None
|
|
logits = apply_all_penalties(
|
|
logits, sampling_metadata.prompt_token_ids,
|
|
sampling_metadata.presence_penalties,
|
|
sampling_metadata.frequency_penalties,
|
|
sampling_metadata.repetition_penalties,
|
|
sampling_metadata.output_token_ids)
|
|
return logits
|
|
|
|
def apply_min_p(
|
|
self,
|
|
logits: torch.Tensor,
|
|
min_p: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Filters logits using adaptive probability thresholding.
|
|
"""
|
|
# Convert logits to probability distribution
|
|
probability_values = torch.nn.functional.softmax(logits, dim=-1)
|
|
# Calculate maximum probabilities per sequence
|
|
max_probabilities = torch.amax(probability_values,
|
|
dim=-1,
|
|
keepdim=True)
|
|
# Reshape min_p for broadcasting
|
|
adjusted_min_p = min_p.unsqueeze(1) * max_probabilities
|
|
# Identify valid tokens using threshold comparison
|
|
valid_token_mask = probability_values >= adjusted_min_p
|
|
# Apply mask using boolean indexing
|
|
logits[~valid_token_mask] = -float('inf')
|
|
return logits
|
|
|
|
def apply_logits_bias(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> torch.Tensor:
|
|
# TODO(houseroad): this implementation is extremely inefficient.
|
|
# One idea is implement this as a PyTorch C++ op, and we may
|
|
# even optimize the logit_bias layout.
|
|
for i, logit_bias in enumerate(sampling_metadata.logit_bias):
|
|
if logit_bias:
|
|
for token_id, bias in logit_bias.items():
|
|
logits[i, token_id] += bias
|
|
return logits
|