mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:24:54 +08:00
Signed-off-by: Luka Govedic <lgovedic@redhat.com> Co-authored-by: mgoin <mgoin64@gmail.com>
98 lines
3.6 KiB
Python
98 lines
3.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import pytest
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
from vllm.compilation.activation_quant_fusion import ActivationQuantFusionPass
|
|
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe
|
|
from vllm.compilation.noop_elimination import NoOpEliminationPass
|
|
from vllm.config import CompilationConfig, PassConfig, VllmConfig
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
GroupShape)
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
|
CUTLASS_FP8_SUPPORTED, Fp8LinearOp)
|
|
from vllm.platforms import current_platform
|
|
|
|
from .backend import TestBackend
|
|
|
|
|
|
class TestModel(torch.nn.Module):
|
|
|
|
def __init__(self, hidden_size: int, cutlass_fp8_enabled: bool, *args,
|
|
**kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.silu_and_mul = SiluAndMul()
|
|
self.wscale = torch.rand(1, dtype=torch.float32)
|
|
self.scale = torch.rand(1, dtype=torch.float32)
|
|
|
|
self.w = (torch.rand(
|
|
hidden_size,
|
|
hidden_size).to(dtype=current_platform.fp8_dtype()).t())
|
|
|
|
self.fp8_linear = Fp8LinearOp(
|
|
cutlass_fp8_supported=cutlass_fp8_enabled,
|
|
act_quant_static=True,
|
|
act_quant_group_shape=GroupShape.PER_TENSOR,
|
|
)
|
|
|
|
def forward(self, x):
|
|
y = self.silu_and_mul(x)
|
|
x2 = self.fp8_linear.apply(y,
|
|
self.w,
|
|
self.wscale,
|
|
input_scale=self.wscale)
|
|
return x2
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", [256])
|
|
@pytest.mark.parametrize("hidden_size", [64])
|
|
@pytest.mark.parametrize("cutlass_fp8_enabled",
|
|
[True, False] if CUTLASS_FP8_SUPPORTED else [False])
|
|
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda", "rocm"],
|
|
reason="Only test on CUDA and ROCm")
|
|
def test_fusion_silu_and_mul_quant(num_tokens, hidden_size,
|
|
cutlass_fp8_enabled):
|
|
torch.set_default_device("cuda")
|
|
torch.set_default_dtype(torch.float16)
|
|
|
|
# Reshape pass is needed for the fusion pass to work
|
|
config = VllmConfig()
|
|
config.compilation_config = CompilationConfig(
|
|
pass_config=PassConfig(enable_fusion=True, enable_noop=True))
|
|
fusion_pass = ActivationQuantFusionPass(config)
|
|
|
|
backend = TestBackend(NoOpEliminationPass(config), fusion_pass)
|
|
model = TestModel(hidden_size, cutlass_fp8_enabled)
|
|
|
|
# First dimension dynamic
|
|
x = torch.rand(num_tokens, hidden_size * 2)
|
|
torch._dynamo.mark_dynamic(x, 0)
|
|
|
|
result = model(x)
|
|
|
|
model2 = torch.compile(model, backend=backend)
|
|
result2 = model2(x)
|
|
|
|
# Check that it gives the same answer
|
|
torch.testing.assert_close(result[0].to(dtype=torch.float16),
|
|
result2[0].to(dtype=torch.float16),
|
|
atol=1e-3,
|
|
rtol=1e-3)
|
|
|
|
# Check substitution worked
|
|
pre_nodes = backend.graph_pre_pass.nodes
|
|
post_nodes = backend.graph_post_pass.nodes
|
|
|
|
silu_and_mul_quant = torch.ops._C.silu_and_mul_quant.default
|
|
fp8_quant = torch.ops._C.static_scaled_fp8_quant.default
|
|
|
|
# In pre-nodes, fp8 quant should be present and fused kernels should not
|
|
assert find_auto_fn_maybe(pre_nodes, silu_and_mul_quant) is None
|
|
find_auto_fn(pre_nodes, fp8_quant)
|
|
|
|
# In post-nodes, fused kernels should be present and fp8 quant should not
|
|
find_auto_fn(post_nodes, silu_and_mul_quant)
|
|
assert find_auto_fn_maybe(post_nodes, fp8_quant) is None
|