mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 05:34:57 +08:00
640 lines
21 KiB
Python
640 lines
21 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import math
|
|
import random
|
|
import time
|
|
from collections.abc import Callable
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from vllm.attention.ops.chunked_prefill_paged_decode import chunked_prefill_paged_decode
|
|
from vllm.attention.ops.prefix_prefill import context_attention_fwd
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
|
|
NUM_HEADS = [64]
|
|
NUM_QUERIES_PER_KV = [1, 64]
|
|
HEAD_SIZES = [24, 128]
|
|
DTYPES = [torch.float16]
|
|
CUDA_DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
|
|
SLIDING_WINDOW = [0, 16, 2048]
|
|
KV_CACHE_DTYPES = ["auto", "fp8", "fp8_e5m2"]
|
|
|
|
OPS = [chunked_prefill_paged_decode, context_attention_fwd]
|
|
|
|
|
|
def create_causal_attention_mask_for_sdpa(
|
|
query_lens: list[int],
|
|
seq_lens: list[int],
|
|
sliding_window: int = 0,
|
|
device: torch.device = None,
|
|
dtype: torch.dtype = None,
|
|
) -> torch.Tensor:
|
|
total_queries = sum(query_lens)
|
|
total_keys = sum(seq_lens)
|
|
|
|
# Create a mask filled with -inf
|
|
mask = torch.full(
|
|
(total_queries, total_keys), float("-inf"), device=device, dtype=dtype
|
|
)
|
|
|
|
query_start = 0
|
|
key_start = 0
|
|
|
|
for query_len, seq_len in zip(query_lens, seq_lens):
|
|
query_end = query_start + query_len
|
|
key_end = key_start + seq_len
|
|
q_indices = torch.arange(query_len, device=device)
|
|
k_indices = torch.arange(seq_len, device=device)
|
|
q_pos_in_seq = seq_len - query_len + q_indices
|
|
|
|
valid_mask = k_indices[None, :] <= q_pos_in_seq[:, None]
|
|
|
|
if sliding_window > 0:
|
|
valid_mask &= k_indices[None, :] >= (
|
|
q_pos_in_seq[:, None] - sliding_window + 1
|
|
)
|
|
|
|
mask[query_start:query_end, key_start:key_end][valid_mask] = 0.0
|
|
|
|
query_start = query_end
|
|
key_start = key_end
|
|
|
|
return mask
|
|
|
|
|
|
def create_alibi_causal_mask(
|
|
query_len: int,
|
|
seq_len: int,
|
|
alibi_slopes: torch.Tensor,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
) -> torch.Tensor:
|
|
query_pos = torch.arange(
|
|
seq_len - query_len, seq_len, device=device, dtype=torch.float32
|
|
)
|
|
key_pos = torch.arange(seq_len, device=device, dtype=torch.float32)
|
|
|
|
rel_pos = key_pos[None, :] - query_pos[:, None]
|
|
|
|
# Apply ALiBi slopes: [num_heads, query_len, seq_len]
|
|
alibi_bias = alibi_slopes[:, None, None] * rel_pos[None, :, :]
|
|
alibi_bias = alibi_bias.to(dtype)
|
|
|
|
# Apply causal mask: prevent attending to future positions
|
|
# causal_mask[i, j] = True if key_pos[j] <= query_pos[i]
|
|
causal_mask = key_pos[None, :] <= query_pos[:, None]
|
|
alibi_bias = alibi_bias.masked_fill(~causal_mask[None, :, :], float("-inf"))
|
|
|
|
# Add batch dimension: [1, num_heads, query_len, seq_len]
|
|
# SDPA expects batch dimension even for single sequences
|
|
return alibi_bias.unsqueeze(0)
|
|
|
|
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("num_queries_per_kv", NUM_QUERIES_PER_KV)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPES)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("sliding_window", SLIDING_WINDOW)
|
|
@pytest.mark.parametrize("op", OPS)
|
|
@torch.inference_mode()
|
|
def test_contexted_kv_attention(
|
|
num_heads: int,
|
|
num_queries_per_kv: int,
|
|
head_size: int,
|
|
sliding_window: int,
|
|
dtype: torch.dtype,
|
|
kv_cache_dtype: str,
|
|
device: str,
|
|
op: Callable,
|
|
) -> None:
|
|
if "fp8" in kv_cache_dtype and not current_platform.has_device_capability(89):
|
|
pytest.skip(
|
|
"Triton limitation: fp8e4nv data type is not supported on CUDA arch < 89"
|
|
)
|
|
|
|
if (
|
|
current_platform.is_rocm()
|
|
and op is chunked_prefill_paged_decode
|
|
and kv_cache_dtype == "fp8_e5m2"
|
|
):
|
|
pytest.skip("ROCm custom paged attention does not support fp8_e5m2 KV cache")
|
|
|
|
current_platform.seed_everything(0)
|
|
torch.set_default_device(device)
|
|
|
|
# Need this, otherwise when we capture the graph the process
|
|
# for GPU 1 would run on both GPU0 and GPU1 and things would hang
|
|
#
|
|
# see also similar issue: https://github.com/Dao-AILab/flash-attention/issues/523
|
|
torch.cuda.set_device(device)
|
|
|
|
MAX_SEQ_LEN = 1024
|
|
MAX_CTX_LEN = 1024
|
|
BS = 10
|
|
cache_size = 640
|
|
block_size = 32
|
|
max_block_per_request = 64
|
|
query_lens = [random.randint(16, MAX_SEQ_LEN) for _ in range(BS)]
|
|
# ensure one sequence in batch is a decode
|
|
query_lens[-1] = 1
|
|
|
|
ctx_lens = [random.randint(16, MAX_CTX_LEN) for _ in range(BS)]
|
|
seq_lens = [a + b for a, b in zip(query_lens, ctx_lens)]
|
|
num_kv_heads = num_heads // num_queries_per_kv
|
|
|
|
num_tokens = sum(query_lens)
|
|
query = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
|
|
query.uniform_(-1e-3, 1e-3)
|
|
output = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
|
|
|
|
kv = torch.empty(sum(seq_lens), 2, num_kv_heads, head_size, dtype=dtype)
|
|
kv.uniform_(-1e-3, 1e-3)
|
|
key, value = kv.unbind(dim=1)
|
|
|
|
if kv_cache_dtype == "auto":
|
|
cache_dtype = dtype
|
|
else:
|
|
cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[kv_cache_dtype]
|
|
k_cache = torch.zeros(
|
|
cache_size, block_size, num_kv_heads, head_size, dtype=cache_dtype
|
|
)
|
|
v_cache = torch.zeros(
|
|
cache_size, block_size, num_kv_heads, head_size, dtype=cache_dtype
|
|
)
|
|
k = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
|
|
v = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
|
|
values = torch.arange(0, cache_size, dtype=torch.int32)
|
|
values = values[torch.randperm(cache_size)]
|
|
block_table = values[: BS * max_block_per_request].view(BS, max_block_per_request)
|
|
b_seq_len = torch.tensor(seq_lens, dtype=torch.int32)
|
|
b_ctx_len = torch.tensor(ctx_lens, dtype=torch.int32)
|
|
b_start_loc = torch.cumsum(torch.tensor([0] + query_lens), dim=0).to(torch.int32)
|
|
max_input_len = MAX_SEQ_LEN
|
|
# copy kv to cache
|
|
b_seq_start_loc = torch.cumsum(torch.tensor([0] + seq_lens[:-1]), dim=0).to(
|
|
torch.int32
|
|
)
|
|
for i in range(BS):
|
|
for j in range(query_lens[i]):
|
|
k[b_start_loc[i] + j].copy_(key[b_seq_start_loc[i] + b_ctx_len[i] + j])
|
|
v[b_start_loc[i] + j].copy_(value[b_seq_start_loc[i] + b_ctx_len[i] + j])
|
|
cur_ctx = 0
|
|
block_id = 0
|
|
while cur_ctx < b_ctx_len[i]:
|
|
start_loc = b_seq_start_loc[i] + cur_ctx
|
|
if cur_ctx + block_size > b_ctx_len[i]:
|
|
end_loc = b_seq_start_loc[i] + b_ctx_len[i]
|
|
else:
|
|
end_loc = start_loc + block_size
|
|
start_slot = block_table[i, block_id] * block_size
|
|
end_slot = start_slot + end_loc - start_loc
|
|
k_cache.view(-1, num_kv_heads, head_size)[start_slot:end_slot].copy_(
|
|
key[start_loc:end_loc]
|
|
)
|
|
v_cache.view(-1, num_kv_heads, head_size)[start_slot:end_slot].copy_(
|
|
value[start_loc:end_loc]
|
|
)
|
|
cur_ctx += block_size
|
|
block_id += 1
|
|
# transpose K_cache[num_blocks, block_size, num_kv_heads, head_size]
|
|
# to K_cache[num_blocks, num_kv_heads, head_size/8, block_size, 8]
|
|
k_cache = (
|
|
k_cache.view(-1, block_size, num_kv_heads, head_size // 8, 8)
|
|
.permute(0, 2, 3, 1, 4)
|
|
.contiguous()
|
|
)
|
|
# transpose V_cache[num_blocks, block_size, num_kv_heads, head_size]
|
|
# to V_cache[num_blocks, num_kv_heads, head_size, block_size]
|
|
v_cache = (
|
|
v_cache.view(-1, block_size, num_kv_heads, head_size)
|
|
.permute(0, 2, 3, 1)
|
|
.contiguous()
|
|
)
|
|
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
|
|
|
|
# Warm up the Triton kernel by calling it once before actually measuring
|
|
# generation time
|
|
op(
|
|
query,
|
|
k,
|
|
v,
|
|
output,
|
|
kv_cache_dtype,
|
|
k_cache,
|
|
v_cache,
|
|
block_table,
|
|
b_start_loc,
|
|
b_seq_len,
|
|
MAX_CTX_LEN,
|
|
max_input_len,
|
|
k_scale,
|
|
v_scale,
|
|
sliding_window=sliding_window,
|
|
)
|
|
torch.cuda.synchronize()
|
|
start_time = time.time()
|
|
op(
|
|
query,
|
|
k,
|
|
v,
|
|
output,
|
|
kv_cache_dtype,
|
|
k_cache,
|
|
v_cache,
|
|
block_table,
|
|
b_start_loc,
|
|
b_seq_len,
|
|
MAX_CTX_LEN,
|
|
max_input_len,
|
|
k_scale,
|
|
v_scale,
|
|
sliding_window=sliding_window,
|
|
)
|
|
torch.cuda.synchronize()
|
|
end_time = time.time()
|
|
print(f"triton Time: {(end_time - start_time) * 1000:.2f} ms")
|
|
|
|
scale = float(1.0 / (head_size**0.5))
|
|
|
|
# Reshape for SDPA: (seq_len, num_heads, head_size) ->
|
|
# (1, num_heads, seq_len, head_size)
|
|
query_sdpa = query.view(num_tokens, num_kv_heads, num_queries_per_kv, head_size)
|
|
query_sdpa = query_sdpa.permute(1, 2, 0, 3).reshape(
|
|
1, num_heads, num_tokens, head_size
|
|
)
|
|
|
|
# Expand key and value for GQA/MQA to match query heads
|
|
key_sdpa = key[:, :, None, :].expand(
|
|
key.shape[0], num_kv_heads, num_queries_per_kv, key.shape[-1]
|
|
)
|
|
key_sdpa = key_sdpa.permute(1, 2, 0, 3).reshape(
|
|
1, num_heads, sum(seq_lens), head_size
|
|
)
|
|
|
|
value_sdpa = value[:, :, None, :].expand(
|
|
value.shape[0], num_kv_heads, num_queries_per_kv, value.shape[-1]
|
|
)
|
|
value_sdpa = value_sdpa.permute(1, 2, 0, 3).reshape(
|
|
1, num_heads, sum(seq_lens), head_size
|
|
)
|
|
|
|
attn_mask = create_causal_attention_mask_for_sdpa(
|
|
query_lens, seq_lens, sliding_window, device=device, dtype=dtype
|
|
)
|
|
|
|
output_ref = F.scaled_dot_product_attention(
|
|
query_sdpa,
|
|
key_sdpa,
|
|
value_sdpa,
|
|
attn_mask=attn_mask,
|
|
dropout_p=0.0,
|
|
scale=scale,
|
|
)
|
|
torch.cuda.synchronize()
|
|
start_time = time.time()
|
|
output_ref = F.scaled_dot_product_attention(
|
|
query_sdpa,
|
|
key_sdpa,
|
|
value_sdpa,
|
|
attn_mask=attn_mask,
|
|
dropout_p=0.0,
|
|
scale=scale,
|
|
)
|
|
torch.cuda.synchronize()
|
|
end_time = time.time()
|
|
print(f"PyTorch SDPA Time: {(end_time - start_time) * 1000:.2f} ms")
|
|
|
|
# Reshape output back to (num_tokens, num_heads, head_size)
|
|
output_ref = output_ref.view(num_heads, num_tokens, head_size)
|
|
output_ref = output_ref.permute(1, 0, 2).contiguous()
|
|
atol = 1e-3 if "fp8" in kv_cache_dtype else 1e-4
|
|
torch.testing.assert_close(output, output_ref, atol=atol, rtol=0)
|
|
|
|
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("num_queries_per_kv", NUM_QUERIES_PER_KV)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPES)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("op", OPS)
|
|
@torch.inference_mode()
|
|
def test_contexted_kv_attention_alibi(
|
|
num_heads: int,
|
|
num_queries_per_kv: int,
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
kv_cache_dtype: str,
|
|
device: str,
|
|
op: Callable,
|
|
) -> None:
|
|
if "fp8" in kv_cache_dtype and not current_platform.has_device_capability(89):
|
|
pytest.skip(
|
|
"Triton limitation: fp8e4nv data type is not supported on CUDA arch < 89"
|
|
)
|
|
|
|
if (
|
|
current_platform.is_rocm()
|
|
and op is chunked_prefill_paged_decode
|
|
and kv_cache_dtype == "fp8_e5m2"
|
|
):
|
|
pytest.skip("ROCm custom paged attention does not support fp8_e5m2 KV cache")
|
|
|
|
current_platform.seed_everything(0)
|
|
torch.set_default_device(device)
|
|
|
|
# Need this, otherwise when we capture the graph the process
|
|
# for GPU 1 would run on both GPU0 and GPU1 and things would hang
|
|
#
|
|
# see also similar issue: https://github.com/Dao-AILab/flash-attention/issues/523
|
|
torch.cuda.set_device(device)
|
|
|
|
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
|
|
# Fork from: vllm/vllm/model_executor/models/bloom.py#L44
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(total_num_heads))
|
|
base = torch.tensor(
|
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))),
|
|
dtype=torch.float32,
|
|
)
|
|
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
|
|
slopes = torch.pow(base, powers)
|
|
|
|
if closest_power_of_2 != total_num_heads:
|
|
extra_base = torch.tensor(
|
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
|
|
dtype=torch.float32,
|
|
)
|
|
num_remaining_heads = min(
|
|
closest_power_of_2, total_num_heads - closest_power_of_2
|
|
)
|
|
extra_powers = torch.arange(
|
|
start=1, end=1 + 2 * num_remaining_heads, step=2, dtype=torch.int32
|
|
)
|
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
|
return slopes
|
|
|
|
alibi_slopes = _get_alibi_slopes(num_heads).to(device)
|
|
|
|
MAX_SEQ_LEN = 1024
|
|
MAX_CTX_LEN = 1024
|
|
BS = 10
|
|
cache_size = 640
|
|
block_size = 32
|
|
max_block_per_request = 64
|
|
query_lens = [random.randint(16, MAX_SEQ_LEN) for _ in range(BS)]
|
|
ctx_lens = [random.randint(16, MAX_CTX_LEN) for _ in range(BS)]
|
|
seq_lens = [a + b for a, b in zip(query_lens, ctx_lens)]
|
|
num_kv_heads = num_heads // num_queries_per_kv
|
|
|
|
num_tokens = sum(query_lens)
|
|
query = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
|
|
query.uniform_(-1e-3, 1e-3)
|
|
output = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
|
|
|
|
kv = torch.empty(sum(seq_lens), 2, num_kv_heads, head_size, dtype=dtype)
|
|
kv.uniform_(-1e-3, 1e-3)
|
|
key, value = kv.unbind(dim=1)
|
|
if kv_cache_dtype == "auto":
|
|
cache_dtype = dtype
|
|
else:
|
|
cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[kv_cache_dtype]
|
|
k_cache = torch.zeros(
|
|
cache_size, block_size, num_kv_heads, head_size, dtype=cache_dtype
|
|
)
|
|
v_cache = torch.zeros(
|
|
cache_size, block_size, num_kv_heads, head_size, dtype=cache_dtype
|
|
)
|
|
k = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
|
|
v = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
|
|
values = torch.arange(0, cache_size, dtype=torch.int32)
|
|
values = values[torch.randperm(cache_size)]
|
|
block_table = values[: BS * max_block_per_request].view(BS, max_block_per_request)
|
|
b_seq_len = torch.tensor(seq_lens, dtype=torch.int32)
|
|
b_ctx_len = torch.tensor(ctx_lens, dtype=torch.int32)
|
|
b_start_loc = torch.cumsum(torch.tensor([0] + query_lens), dim=0).to(torch.int32)
|
|
max_input_len = MAX_SEQ_LEN
|
|
# copy kv to cache
|
|
b_seq_start_loc = torch.cumsum(torch.tensor([0] + seq_lens[:-1]), dim=0).to(
|
|
torch.int32
|
|
)
|
|
for i in range(BS):
|
|
for j in range(query_lens[i]):
|
|
k[b_start_loc[i] + j].copy_(key[b_seq_start_loc[i] + b_ctx_len[i] + j])
|
|
v[b_start_loc[i] + j].copy_(value[b_seq_start_loc[i] + b_ctx_len[i] + j])
|
|
cur_ctx = 0
|
|
block_id = 0
|
|
while cur_ctx < b_ctx_len[i]:
|
|
start_loc = b_seq_start_loc[i] + cur_ctx
|
|
if cur_ctx + block_size > b_ctx_len[i]:
|
|
end_loc = b_seq_start_loc[i] + b_ctx_len[i]
|
|
else:
|
|
end_loc = start_loc + block_size
|
|
start_slot = block_table[i, block_id] * block_size
|
|
end_slot = start_slot + end_loc - start_loc
|
|
k_cache.view(-1, num_kv_heads, head_size)[start_slot:end_slot].copy_(
|
|
key[start_loc:end_loc]
|
|
)
|
|
v_cache.view(-1, num_kv_heads, head_size)[start_slot:end_slot].copy_(
|
|
value[start_loc:end_loc]
|
|
)
|
|
cur_ctx += block_size
|
|
block_id += 1
|
|
# transpose K_cache[num_blocks, block_size, num_kv_heads, head_size]
|
|
# to K_cache[num_blocks, num_kv_heads, head_size/8, block_size, 8]
|
|
k_cache = (
|
|
k_cache.view(-1, block_size, num_kv_heads, head_size // 8, 8)
|
|
.permute(0, 2, 3, 1, 4)
|
|
.contiguous()
|
|
)
|
|
# transpose V_cache[num_blocks, block_size, num_kv_heads, head_size]
|
|
# to V_cache[num_blocks, num_kv_heads, head_size, block_size]
|
|
v_cache = (
|
|
v_cache.view(-1, block_size, num_kv_heads, head_size)
|
|
.permute(0, 2, 3, 1)
|
|
.contiguous()
|
|
)
|
|
k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)
|
|
|
|
# Warm up the Triton kernel by calling it once before actually measuring
|
|
# generation time
|
|
op(
|
|
query,
|
|
k,
|
|
v,
|
|
output,
|
|
kv_cache_dtype,
|
|
k_cache,
|
|
v_cache,
|
|
block_table,
|
|
b_start_loc,
|
|
b_seq_len,
|
|
MAX_CTX_LEN,
|
|
max_input_len,
|
|
k_scale,
|
|
v_scale,
|
|
alibi_slopes=alibi_slopes,
|
|
)
|
|
torch.cuda.synchronize()
|
|
start_time = time.time()
|
|
op(
|
|
query,
|
|
k,
|
|
v,
|
|
output,
|
|
kv_cache_dtype,
|
|
k_cache,
|
|
v_cache,
|
|
block_table,
|
|
b_start_loc,
|
|
b_seq_len,
|
|
MAX_CTX_LEN,
|
|
max_input_len,
|
|
k_scale,
|
|
v_scale,
|
|
alibi_slopes=alibi_slopes,
|
|
)
|
|
torch.cuda.synchronize()
|
|
end_time = time.time()
|
|
print(f"triton Time: {(end_time - start_time) * 1000:.2f} ms")
|
|
scale = float(1.0 / (head_size**0.5))
|
|
|
|
# Prepare query, key, value for SDPA
|
|
# Expand key and value for GQA/MQA to match query heads
|
|
key_expanded = key[:, :, None, :].expand(
|
|
key.shape[0], num_kv_heads, num_queries_per_kv, key.shape[-1]
|
|
)
|
|
value_expanded = value[:, :, None, :].expand(
|
|
value.shape[0], num_kv_heads, num_queries_per_kv, value.shape[-1]
|
|
)
|
|
|
|
output_ref = torch.empty_like(output)
|
|
|
|
torch.cuda.synchronize()
|
|
start_time = time.time()
|
|
|
|
query_start = 0
|
|
key_start = 0
|
|
for i, (query_len, seq_len) in enumerate(zip(query_lens, seq_lens)):
|
|
query_end = query_start + query_len
|
|
key_end = key_start + seq_len
|
|
|
|
# Get query, key, value for this sequence
|
|
q = query[query_start:query_end] # [query_len, num_heads, head_size]
|
|
k = key_expanded[
|
|
key_start:key_end
|
|
] # [seq_len, num_kv_heads, num_queries_per_kv, head_size]
|
|
v = value_expanded[
|
|
key_start:key_end
|
|
] # [seq_len, num_kv_heads, num_queries_per_kv, head_size]
|
|
|
|
# Reshape for SDPA: (batch=1, num_heads, seq_len, head_size)
|
|
q_sdpa = q.view(query_len, num_kv_heads, num_queries_per_kv, head_size)
|
|
q_sdpa = (
|
|
q_sdpa.permute(1, 2, 0, 3)
|
|
.reshape(1, num_heads, query_len, head_size)
|
|
.contiguous()
|
|
)
|
|
|
|
k_sdpa = (
|
|
k.permute(1, 2, 0, 3).reshape(1, num_heads, seq_len, head_size).contiguous()
|
|
)
|
|
v_sdpa = (
|
|
v.permute(1, 2, 0, 3).reshape(1, num_heads, seq_len, head_size).contiguous()
|
|
)
|
|
|
|
# Create ALiBi causal mask for this sequence using utility function
|
|
alibi_mask = create_alibi_causal_mask(
|
|
query_len, seq_len, alibi_slopes, device, dtype
|
|
)
|
|
|
|
# Compute attention
|
|
out = F.scaled_dot_product_attention(
|
|
q_sdpa,
|
|
k_sdpa,
|
|
v_sdpa,
|
|
attn_mask=alibi_mask,
|
|
dropout_p=0.0,
|
|
scale=scale,
|
|
)
|
|
|
|
# Reshape output back to [query_len, num_heads, head_size]
|
|
out = out.view(num_heads, query_len, head_size).permute(1, 0, 2)
|
|
output_ref[query_start:query_end].copy_(out)
|
|
|
|
query_start = query_end
|
|
key_start = key_end
|
|
|
|
torch.cuda.synchronize()
|
|
end_time = time.time()
|
|
print(f"PyTorch SDPA Time: {(end_time - start_time) * 1000:.2f} ms")
|
|
atol = 1e-3 if "fp8" in kv_cache_dtype else 1e-6
|
|
torch.testing.assert_close(output, output_ref, atol=atol, rtol=0)
|
|
|
|
|
|
# These tests are optional to only run when explicitly invoked
|
|
#
|
|
# pytest -v -s --optional \
|
|
# tests/kernels/test_prefix_prefill.py::test_contexted_kv_attention_f32
|
|
#
|
|
# These tests are useful to test model dtype float32 on Turing devices.
|
|
# We skip them to not increase the time when running tests on CI
|
|
@pytest.mark.optional
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("num_queries_per_kv", NUM_QUERIES_PER_KV)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("dtype", [torch.float32])
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPES)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("sliding_window", SLIDING_WINDOW)
|
|
@pytest.mark.parametrize("op", OPS)
|
|
@torch.inference_mode()
|
|
def test_contexted_kv_attention_f32(
|
|
num_heads: int,
|
|
num_queries_per_kv: int,
|
|
head_size: int,
|
|
sliding_window: int,
|
|
dtype: torch.dtype,
|
|
kv_cache_dtype: str,
|
|
device: str,
|
|
op: Callable,
|
|
) -> None:
|
|
test_contexted_kv_attention(
|
|
num_heads,
|
|
num_queries_per_kv,
|
|
head_size,
|
|
sliding_window,
|
|
dtype,
|
|
kv_cache_dtype,
|
|
device,
|
|
op,
|
|
)
|
|
|
|
|
|
@pytest.mark.optional
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("num_queries_per_kv", NUM_QUERIES_PER_KV)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("dtype", [torch.float32])
|
|
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPES)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@pytest.mark.parametrize("op", OPS)
|
|
@torch.inference_mode()
|
|
def test_contexted_kv_attention_alibi_f32(
|
|
num_heads: int,
|
|
num_queries_per_kv: int,
|
|
head_size: int,
|
|
dtype: torch.dtype,
|
|
kv_cache_dtype: str,
|
|
device: str,
|
|
op: Callable,
|
|
) -> None:
|
|
test_contexted_kv_attention_alibi(
|
|
num_heads, num_queries_per_kv, head_size, dtype, kv_cache_dtype, device, op
|
|
)
|