Varun Sundar Rabindranath 53fa457391
[Misc] Add unit tests for MoE ModularKernel combinations + Profiling utility (#20449)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-07-11 07:51:46 -07:00

88 lines
3.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
# Fused experts and PrepareFinalize imports
from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
BatchedDeepGemmExperts)
from vllm.model_executor.layers.fused_moe.batched_triton_or_deep_gemm_moe import ( # noqa: E501
BatchedTritonOrDeepGemmExperts)
from vllm.model_executor.layers.fused_moe.config import FusedMoEQuantConfig
from vllm.model_executor.layers.fused_moe.cutlass_moe import CutlassExpertsFp8
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import DeepGemmExperts
from vllm.model_executor.layers.fused_moe.fused_batched_moe import (
BatchedTritonExperts, NaiveBatchedExperts)
from vllm.model_executor.layers.fused_moe.layer import TritonExperts
from vllm.model_executor.layers.fused_moe.prepare_finalize import (
MoEPrepareAndFinalizeNoEP)
from vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe import (
TritonOrDeepGemmExperts)
from vllm.utils import has_deep_ep, has_pplx
if has_deep_ep():
from vllm.model_executor.layers.fused_moe.deepep_ht_prepare_finalize import ( # noqa: E501
DeepEPHTPrepareAndFinalize)
from vllm.model_executor.layers.fused_moe.deepep_ll_prepare_finalize import ( # noqa: E501
DeepEPLLPrepareAndFinalize)
if has_pplx():
from vllm.model_executor.layers.fused_moe.pplx_prepare_finalize import (
PplxPrepareAndFinalize)
MK_MULTI_GPU_PREPARE_FINALIZE_TYPES = []
if has_pplx():
MK_MULTI_GPU_PREPARE_FINALIZE_TYPES += [PplxPrepareAndFinalize]
if has_deep_ep():
MK_MULTI_GPU_PREPARE_FINALIZE_TYPES += [
DeepEPHTPrepareAndFinalize, DeepEPLLPrepareAndFinalize
]
MK_SINGLE_GPU_PREPARE_FINALIZE_TYPES = [MoEPrepareAndFinalizeNoEP]
MK_ALL_PREPARE_FINALIZE_TYPES = (MK_MULTI_GPU_PREPARE_FINALIZE_TYPES +
MK_SINGLE_GPU_PREPARE_FINALIZE_TYPES)
MK_FUSED_EXPERT_TYPES = [
BatchedDeepGemmExperts,
BatchedTritonExperts,
NaiveBatchedExperts,
BatchedTritonOrDeepGemmExperts,
CutlassExpertsFp8,
DeepGemmExperts,
TritonOrDeepGemmExperts,
TritonExperts,
]
MK_QUANT_CONFIGS = [
None,
# per-channel / per-column weights and per-tensor activations
FusedMoEQuantConfig(quant_dtype=torch.float8_e4m3fn,
per_out_ch_quant=True,
per_act_token_quant=False,
block_shape=None),
# per-channel / per-column weights and per-token activations
FusedMoEQuantConfig(quant_dtype=torch.float8_e4m3fn,
per_out_ch_quant=True,
per_act_token_quant=True,
block_shape=None),
# per-tensor weights and per-tensor activations
FusedMoEQuantConfig(quant_dtype=torch.float8_e4m3fn,
per_out_ch_quant=False,
per_act_token_quant=False,
block_shape=None),
# per-tensor weights and per-token activations
FusedMoEQuantConfig(quant_dtype=torch.float8_e4m3fn,
per_out_ch_quant=False,
per_act_token_quant=True,
block_shape=None),
# block-quantized weights and 128 block per-token activations
FusedMoEQuantConfig(quant_dtype=torch.float8_e4m3fn,
per_out_ch_quant=False,
per_act_token_quant=False,
block_shape=[128, 128]),
# TODO (varun) : Should we test the following combinations ?
# block-quantized weights and per-token activations
# block-quantized weights and per-tensor activations
]