Cyrus Leung 33b06a6f24
[Misc] Remove redundant attention var constants (#29650)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-11-28 04:35:19 -08:00

173 lines
5.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# flake8: noqa
"""Tests fp8 models against ground truth generation
Note: these tests will only pass on L4 GPU.
"""
import pytest
from tests.quantization.utils import is_quant_method_supported
from vllm.attention.utils.fa_utils import flash_attn_supports_fp8
from vllm.platforms import current_platform
from ..utils import check_logprobs_close
@pytest.mark.skipif(
not is_quant_method_supported("fp8"),
reason="fp8 is not supported on this GPU type.",
)
@pytest.mark.parametrize(
"kv_cache_dtype,base_model,test_model",
[
# Test FP8 checkpoint w. fp8_e4m3 kv-cache scaling factors.
(
"fp8_e4m3",
"meta-llama/Llama-3.2-1B-Instruct",
"nm-testing/Llama-3.2-1B-Instruct-FP8-KV",
),
# Test BF16 checkpoint w. fp8_e5m2 kv-cache.
(
"fp8_e5m2",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
),
# Test BF16 checkpoint w. fp8_e4m3 kv-cache scaling factors in json.
(
"fp8_e4m3",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
),
],
)
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("enforce_eager", [True])
@pytest.mark.parametrize("backend", ["FLASH_ATTN"])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
def test_models(
vllm_runner,
example_prompts,
kv_cache_dtype: str,
base_model: str,
test_model: str,
max_tokens: int,
enforce_eager: bool,
backend: str,
tensor_parallel_size: int,
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""
Only checks log probs match to cover the discrepancy in
numerical sensitive kernels.
"""
if kv_cache_dtype == "fp8_e5m2" and current_platform.is_rocm():
pytest.skip(f"{kv_cache_dtype} is currently not supported on ROCm/HIP.")
if not flash_attn_supports_fp8():
pytest.skip(
f"{kv_cache_dtype} is not supported on this GPU type with {backend} attention."
)
with monkeypatch.context() as m:
m.setenv("TOKENIZERS_PARALLELISM", "true")
m.setenv("VLLM_ATTENTION_BACKEND", backend)
MAX_MODEL_LEN = 1024
NUM_LOG_PROBS = 8
with vllm_runner(
base_model,
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
kv_cache_dtype="auto",
) as vllm_model:
baseline_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS
)
with vllm_runner(
test_model,
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
) as vllm_model:
test_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS
)
check_logprobs_close(
outputs_0_lst=baseline_outputs,
outputs_1_lst=test_outputs,
name_0="fp16_kv_cache",
name_1="fp8_kv_cache",
)
@pytest.mark.cpu_model
@pytest.mark.skipif(not current_platform.is_cpu(), reason="test for the CPU backend.")
@pytest.mark.parametrize(
"kv_cache_dtype,base_model,test_model",
[
# Test BF16 checkpoint w. fp8_e5m2 kv-cache.
(
"fp8_e5m2",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
),
],
)
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
@pytest.mark.parametrize("max_tokens", [4])
def test_cpu_models(
vllm_runner,
example_prompts,
kv_cache_dtype: str,
base_model: str,
test_model: str,
max_tokens: int,
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""
Only checks log probs match to cover the discrepancy in
numerical sensitive kernels.
"""
with monkeypatch.context() as m:
m.setenv("TOKENIZERS_PARALLELISM", "true")
MAX_MODEL_LEN = 1024
NUM_LOG_PROBS = 8
with vllm_runner(
base_model,
max_model_len=MAX_MODEL_LEN,
dtype="bfloat16",
kv_cache_dtype="auto",
) as vllm_model:
baseline_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS
)
with vllm_runner(
test_model,
max_model_len=MAX_MODEL_LEN,
dtype="bfloat16",
kv_cache_dtype=kv_cache_dtype,
) as vllm_model:
test_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS
)
check_logprobs_close(
outputs_0_lst=baseline_outputs,
outputs_1_lst=test_outputs,
name_0="bf16_kv_cache",
name_1="fp8_kv_cache",
)