vllm/csrc/cpu/cpu_attn.cpp
Fadi Arafeh 730bd35378
[perf][cpu] Accelerate paged attention GEMMs (QK, PV) on Arm CPUs with NEON (#29193)
Signed-off-by: Fadi Arafeh <fadi.arafeh@arm.com>
2025-11-22 09:04:36 -08:00

267 lines
12 KiB
C++

#include "cpu_attn_vec.hpp"
#include "cpu_attn_vec16.hpp"
#ifdef CPU_CAPABILITY_AMXBF16
#include "cpu_attn_amx.hpp"
#define AMX_DISPATCH(...) \
case cpu_attention::ISA::AMX: { \
using attn_impl = cpu_attention::AttentionImpl<cpu_attention::ISA::AMX, \
scalar_t, head_dim>; \
return __VA_ARGS__(); \
}
#else
#define AMX_DISPATCH(...) case cpu_attention::ISA::AMX:
#endif
#ifdef __aarch64__
#include "cpu_attn_neon.hpp"
#define NEON_DISPATCH(...) \
case cpu_attention::ISA::NEON: { \
using attn_impl = cpu_attention::AttentionImpl<cpu_attention::ISA::NEON, \
scalar_t, head_dim>; \
return __VA_ARGS__(); \
}
#else
#define NEON_DISPATCH(...) case cpu_attention::ISA::NEON:
#endif // #ifdef __aarch64__
#define CPU_ATTN_DISPATCH_CASE(HEAD_DIM, ...) \
case HEAD_DIM: { \
constexpr size_t head_dim = HEAD_DIM; \
return __VA_ARGS__(); \
}
#define CPU_ATTN_DISPATCH_CASE_HEADDIM(HEAD_DIM, ...) \
[&] { \
switch (HEAD_DIM) { \
CPU_ATTN_DISPATCH_CASE(32, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(64, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(96, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(128, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(160, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(192, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(224, __VA_ARGS__) \
CPU_ATTN_DISPATCH_CASE(256, __VA_ARGS__) \
default: { \
TORCH_CHECK(false, "Invalid CPU attention head_dim: " + \
std::to_string(HEAD_DIM)); \
} \
} \
}()
#define CPU_ATTN_DISPATCH_IMPL(ISA_TYPE, ...) \
[&] { \
switch (ISA_TYPE) { \
AMX_DISPATCH(__VA_ARGS__) \
NEON_DISPATCH(__VA_ARGS__) \
case cpu_attention::ISA::VEC: { \
using attn_impl = \
cpu_attention::AttentionImpl<cpu_attention::ISA::VEC, scalar_t, \
head_dim>; \
return __VA_ARGS__(); \
} \
case cpu_attention::ISA::VEC16: { \
using attn_impl = \
cpu_attention::AttentionImpl<cpu_attention::ISA::VEC16, scalar_t, \
head_dim>; \
return __VA_ARGS__(); \
} \
default: { \
TORCH_CHECK(false, "Invalid CPU attention ISA type."); \
} \
} \
}()
torch::Tensor get_scheduler_metadata(
const int64_t num_req, const int64_t num_heads_q,
const int64_t num_heads_kv, const int64_t head_dim,
const torch::Tensor& seq_lens, at::ScalarType dtype,
const torch::Tensor& query_start_loc, const bool casual,
const int64_t window_size, const std::string& isa_hint,
const bool enable_kv_split) {
cpu_attention::ISA isa;
if (isa_hint == "amx") {
isa = cpu_attention::ISA::AMX;
} else if (isa_hint == "vec") {
isa = cpu_attention::ISA::VEC;
} else if (isa_hint == "vec16") {
isa = cpu_attention::ISA::VEC16;
} else if (isa_hint == "neon") {
isa = cpu_attention::ISA::NEON;
} else {
TORCH_CHECK(false, "Unsupported CPU attention ISA hint: " + isa_hint);
}
cpu_attention::AttentionScheduler::ScheduleInput input;
input.num_reqs = num_req;
input.num_heads_q = num_heads_q;
input.num_heads_kv = num_heads_kv;
input.head_dim = head_dim;
input.query_start_loc = query_start_loc.data_ptr<int32_t>();
input.seq_lens = seq_lens.data_ptr<int32_t>();
if (window_size != -1) {
input.left_sliding_window_size = window_size - 1;
if (casual) {
input.right_sliding_window_size = 0;
} else {
input.right_sliding_window_size = window_size - 1;
}
} else {
input.left_sliding_window_size = -1;
if (casual) {
input.right_sliding_window_size = 0;
} else {
input.right_sliding_window_size = -1;
}
}
input.casual = casual;
input.isa = isa;
input.enable_kv_split = enable_kv_split;
TORCH_CHECK(casual, "Only supports casual mask for now.");
VLLM_DISPATCH_FLOATING_TYPES(dtype, "get_scheduler_metadata", [&]() {
CPU_ATTN_DISPATCH_CASE_HEADDIM(head_dim, [&] {
CPU_ATTN_DISPATCH_IMPL(isa, [&]() {
input.elem_size = sizeof(scalar_t);
input.q_buffer_elem_size = sizeof(attn_impl::q_buffer_t);
input.logits_buffer_elem_size = sizeof(attn_impl::logits_buffer_t);
input.output_buffer_elem_size =
sizeof(attn_impl::partial_output_buffer_t);
input.max_num_q_per_iter = attn_impl::MaxQHeadNumPerIteration;
input.kv_block_alignment = attn_impl::BlockSizeAlignment;
});
});
});
cpu_attention::AttentionScheduler scheduler;
torch::Tensor metadata = scheduler.schedule(input);
return metadata;
}
void cpu_attn_reshape_and_cache(
const torch::Tensor& key, // [token_num, head_num, head_size]
const torch::Tensor& value, // [token_num, head_num, head_size]
torch::Tensor&
key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor&
value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const torch::Tensor& slot_mapping, const std::string& isa) {
TORCH_CHECK_EQ(key.dim(), 3);
TORCH_CHECK_EQ(value.dim(), 3);
TORCH_CHECK_EQ(key_cache.dim(), 4);
TORCH_CHECK_EQ(value_cache.dim(), 4);
TORCH_CHECK_EQ(key.stride(2), 1);
TORCH_CHECK_EQ(value.stride(2), 1);
const int64_t token_num = key.size(0);
const int64_t key_token_num_stride = key.stride(0);
const int64_t value_token_num_stride = value.stride(0);
const int64_t head_num = value.size(1);
const int64_t key_head_num_stride = key.stride(1);
const int64_t value_head_num_stride = value.stride(1);
const int64_t num_blocks = key_cache.size(0);
const int64_t num_blocks_stride = key_cache.stride(0);
const int64_t cache_head_num_stride = key_cache.stride(1);
const int64_t block_size = key_cache.size(2);
const int64_t block_size_stride = key_cache.stride(2);
const int64_t head_dim = key.size(-1);
cpu_attention::ISA isa_tag = [&]() {
if (isa == "amx") {
return cpu_attention::ISA::AMX;
} else if (isa == "vec") {
return cpu_attention::ISA::VEC;
} else if (isa == "vec16") {
return cpu_attention::ISA::VEC16;
} else if (isa == "neon") {
return cpu_attention::ISA::NEON;
} else {
TORCH_CHECK(false, "Invalid ISA type: " + isa);
}
}();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(), "cpu_attn_reshape_and_cache", [&]() {
CPU_ATTN_DISPATCH_CASE_HEADDIM(head_dim, [&] {
CPU_ATTN_DISPATCH_IMPL(isa_tag, [&]() {
attn_impl::reshape_and_cache(
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
key_cache.data_ptr<scalar_t>(),
value_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(), token_num,
key_token_num_stride, value_token_num_stride, head_num,
key_head_num_stride, value_head_num_stride, num_blocks,
num_blocks_stride, cache_head_num_stride, block_size,
block_size_stride);
});
});
});
}
void cpu_attention_with_kv_cache(
const torch::Tensor& query, // [num_tokens, num_heads, head_size]
const torch::Tensor&
key_cache, // [num_blocks, num_kv_heads, block_size, head_size]
const torch::Tensor&
value_cache, // [num_blocks, num_kv_heads, block_size, head_size]
torch::Tensor& output, // [num_tokens, num_heads, head_size]
const torch::Tensor& query_start_loc, // [num_tokens + 1]
const torch::Tensor& seq_lens, // [num_tokens]
const double scale, const bool causal,
const std::optional<torch::Tensor>& alibi_slopes, // [num_heads]
const int64_t sliding_window_left, const int64_t sliding_window_right,
const torch::Tensor& block_table, // [num_tokens, max_block_num]
const double softcap, const torch::Tensor& scheduler_metadata,
const std::optional<torch::Tensor>& s_aux // [num_heads]
) {
TORCH_CHECK_EQ(query.dim(), 3);
TORCH_CHECK_EQ(query.stride(2), 1);
TORCH_CHECK_EQ(key_cache.dim(), 4);
TORCH_CHECK_EQ(value_cache.dim(), 4);
cpu_attention::AttentionInput input;
input.metadata = reinterpret_cast<cpu_attention::AttentionMetadata*>(
scheduler_metadata.data_ptr());
input.num_tokens = query.size(0);
input.num_heads = query.size(1);
input.num_kv_heads = key_cache.size(1);
input.block_size = key_cache.size(2);
input.query = query.data_ptr();
input.query_num_tokens_stride = query.stride(0);
input.query_num_heads_stride = query.stride(1);
input.cache_num_blocks_stride = key_cache.stride(0);
input.cache_num_kv_heads_stride = key_cache.stride(1);
input.blt_num_tokens_stride = block_table.stride(0);
input.key_cache = key_cache.data_ptr();
input.value_cache = value_cache.data_ptr();
input.output = output.data_ptr();
input.query_start_loc = query_start_loc.data_ptr<int32_t>();
input.seq_lens = seq_lens.data_ptr<int32_t>();
input.block_table = block_table.data_ptr<int32_t>();
input.alibi_slopes =
alibi_slopes.has_value() ? alibi_slopes->data_ptr<float>() : nullptr;
// For now sink must be bf16
input.s_aux = s_aux.has_value() ? s_aux->data_ptr<c10::BFloat16>() : nullptr;
input.scale = scale;
input.causal = causal;
input.sliding_window_left = sliding_window_left;
input.sliding_window_right = sliding_window_right;
if (input.causal) {
// to make boundary calculation easier
input.sliding_window_right = 0;
}
float softcap_fp32 = softcap;
input.softcap = softcap_fp32;
VLLM_DISPATCH_FLOATING_TYPES(
query.scalar_type(), "cpu_attention_with_kv_cache", [&]() {
CPU_ATTN_DISPATCH_CASE_HEADDIM(query.size(2), [&] {
CPU_ATTN_DISPATCH_IMPL(input.metadata->isa, [&]() {
TORCH_CHECK_EQ(input.block_size % attn_impl::BlockSizeAlignment, 0);
cpu_attention::AttentionMainLoop<attn_impl> mainloop;
mainloop(&input);
});
});
});
}