vllm/csrc/quantization/gptq_marlin/generate_kernels.py
Jinzhen Lin 1656ad3704
[Kernel][Quantization] add w4a8 support for marlin kernel (#24722)
Signed-off-by: Jinzhen Lin <jinzhen.ljz@antgroup.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Michael Goin <mgoin@redhat.com>
2025-11-29 07:19:33 -08:00

297 lines
9.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import glob
import itertools
import os
import subprocess
import sys
import jinja2
ARCHS = []
SUPPORT_FP8 = False
for arch in sys.argv[1].split(","):
arch = arch[: arch.index(".") + 2].replace(".", "")
arch = int(arch)
# only SM89 and SM120 fully support
# mma.sync.aligned.m16n8k32.row.col.f32.e4m3.e4m3.f32.
# SM90 and SM100 can use this PTX, but its simulated
# with FP16 MMA, so it cannot achieve any acceleration.
if arch in [89, 120]:
SUPPORT_FP8 = True
FILE_HEAD_COMMENT = """
// auto generated by generate_kernels.py
// clang-format off
""".lstrip()
FILE_HEAD = (
FILE_HEAD_COMMENT
+ """
#include "kernel.h"
#include "marlin_template.h"
namespace MARLIN_NAMESPACE_NAME {
"""
)
TEMPLATE = (
"template __global__ void Marlin<"
"{{a_type_id}}, "
"{{b_type_id}}, "
"{{c_type_id}}, "
"{{s_type_id}}, "
"{{threads}}, "
"{{thread_m_blocks}}, "
"{{thread_n_blocks}}, "
"{{thread_k_blocks}}, "
"{{m_block_size_8}}, "
"{{stages}}, "
"{{group_blocks}}, "
"{{is_zp_float}}>"
"( MARLIN_KERNEL_PARAMS );"
)
THREAD_CONFIGS = [(128, 128, 256), (64, 256, 256), (64, 128, 128), (128, 64, 128)]
THREAD_M_BLOCKS = [0.5, 1, 2, 3, 4]
QUANT_CONFIGS = [
# AWQ-INT4
{
"b_type": "kU4",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": THREAD_M_BLOCKS,
"group_blocks": [-1, 2, 4, 8],
},
# HQQ
{
"a_type": ["kFloat16"],
"b_type": "kU4",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": THREAD_M_BLOCKS,
"group_blocks": [4],
"is_zp_float": True,
},
# GPTQ-INT4
{
"b_type": "kU4B8",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": THREAD_M_BLOCKS,
"group_blocks": [-1, 0, 2, 4, 8],
},
# GPTQ-INT8
{
"b_type": "kU8B128",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": THREAD_M_BLOCKS,
"group_blocks": [-1, 0, 2, 4, 8],
},
# FP8
{
"b_type": "kFE4M3fn",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": THREAD_M_BLOCKS,
"group_blocks": [-1, 8],
},
# NVFP4
{
"b_type": "kFE2M1f",
"s_type": "kFE4M3fn",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": THREAD_M_BLOCKS,
"group_blocks": [1],
},
# MXFP4
{
"a_type": ["kBFloat16"],
"b_type": "kFE2M1f",
"s_type": "kFE8M0fnu",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": THREAD_M_BLOCKS,
"group_blocks": [2],
},
# AWQ-INT4 with INT8 activation
{
"a_type": ["kS8"],
"b_type": "kU4",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": [1, 2, 3, 4],
"group_blocks": [-1, 2, 4, 8],
},
# GPTQ-INT4 with INT8 activation
{
"a_type": ["kS8"],
"b_type": "kU4B8",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": [1, 2, 3, 4],
"group_blocks": [-1, 2, 4, 8],
},
# GPTQ-INT4 with FP8 activation
{
"a_type": ["kFE4M3fn"],
"b_type": "kU4B8",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": [1, 2, 3, 4],
"group_blocks": [-1, 2, 4, 8],
},
# AWQ-INT4 with FP8 activation
{
"a_type": ["kFE4M3fn"],
"b_type": "kU4",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": [1, 2, 3, 4],
"group_blocks": [-1, 2, 4, 8],
},
# MXFP4 with FP8 activation
{
"a_type": ["kFE4M3fn"],
"b_type": "kFE2M1f",
"c_type": ["kBFloat16"],
"s_type": "kFE8M0fnu",
"thread_configs": THREAD_CONFIGS,
"thread_m_blocks": [1, 2, 3, 4],
"group_blocks": [2],
},
]
def remove_old_kernels():
for filename in glob.glob(os.path.dirname(__file__) + "/*kernel_*.cu"):
subprocess.call(["rm", "-f", filename])
filename = os.path.dirname(__file__) + "/kernel_selector.h"
subprocess.call(["rm", "-f", filename])
def generate_new_kernels():
result_dict = {}
for quant_config in QUANT_CONFIGS:
c_types = quant_config.get("c_type", ["kFloat16", "kBFloat16"])
a_types = quant_config.get("a_type", ["kFloat16", "kBFloat16"])
b_type = quant_config["b_type"]
is_zp_float = quant_config.get("is_zp_float", False)
all_group_blocks = quant_config["group_blocks"]
all_m_blocks = quant_config["thread_m_blocks"]
all_thread_configs = quant_config["thread_configs"]
for a_type, c_type in itertools.product(a_types, c_types):
if not SUPPORT_FP8 and a_type == "kFE4M3fn":
continue
if "16" in a_type and "16" in c_type and a_type != c_type:
continue
s_type = quant_config.get("s_type", c_type)
if (a_type, b_type, c_type) not in result_dict:
result_dict[(a_type, b_type, c_type)] = []
for group_blocks, m_blocks, thread_configs in itertools.product(
all_group_blocks, all_m_blocks, all_thread_configs
):
thread_k, thread_n, threads = thread_configs
if threads == 256:
# for small batch (m_blocks == 1),
# we only need (128, 128, 256)
# for large batch (m_blocks > 1),
# we only need (64, 256, 256)
if m_blocks <= 1 and (thread_k, thread_n) != (128, 128):
continue
if m_blocks > 1 and (thread_k, thread_n) != (64, 256):
continue
config = {
"threads": threads,
"s_type": s_type,
"thread_m_blocks": max(m_blocks, 1),
"thread_k_blocks": thread_k // 16,
"thread_n_blocks": thread_n // 16,
"m_block_size_8": "true" if m_blocks == 0.5 else "false",
"stages": "pipe_stages",
"group_blocks": group_blocks,
"is_zp_float": "true" if is_zp_float else "false",
}
result_dict[(a_type, b_type, c_type)].append(config)
kernel_selector_str = FILE_HEAD_COMMENT
for (a_type, b_type, c_type), config_list in result_dict.items():
all_template_str_list = []
for config in config_list:
s_type = config["s_type"]
template_str = jinja2.Template(TEMPLATE).render(
a_type_id=f"vllm::{a_type}.id()",
b_type_id=f"vllm::{b_type}.id()",
c_type_id=f"vllm::{c_type}.id()",
s_type_id=f"vllm::{s_type}.id()",
**config,
)
all_template_str_list.append(template_str)
conditions = [
f"a_type == vllm::{a_type}",
f"b_type == vllm::{b_type}",
f"c_type == vllm::{c_type}",
f"s_type == vllm::{s_type}",
f"threads == {config['threads']}",
f"thread_m_blocks == {config['thread_m_blocks']}",
f"thread_n_blocks == {config['thread_n_blocks']}",
f"thread_k_blocks == {config['thread_k_blocks']}",
f"m_block_size_8 == {config['m_block_size_8']}",
f"group_blocks == {config['group_blocks']}",
f"is_zp_float == {config['is_zp_float']}",
]
conditions = " && ".join(conditions)
if kernel_selector_str == FILE_HEAD_COMMENT:
kernel_selector_str += f"if ({conditions})\n kernel = "
else:
kernel_selector_str += f"else if ({conditions})\n kernel = "
kernel_template2 = (
"Marlin<{{a_type_id}}, {{b_type_id}}, {{c_type_id}}, "
"{{s_type_id}}, {{threads}}, {{thread_m_blocks}}, "
"{{thread_n_blocks}}, {{thread_k_blocks}}, "
"{{m_block_size_8}}, {{stages}}, {{group_blocks}}, "
"{{is_zp_float}}>;"
)
kernel_selector_str += (
jinja2.Template(kernel_template2).render(
a_type_id=f"vllm::{a_type}.id()",
b_type_id=f"vllm::{b_type}.id()",
c_type_id=f"vllm::{c_type}.id()",
s_type_id=f"vllm::{s_type}.id()",
**config,
)
+ "\n"
)
file_content = FILE_HEAD + "\n\n"
file_content += "\n\n".join(all_template_str_list) + "\n\n}\n"
if a_type == "kFE4M3fn":
filename = f"sm89_kernel_{a_type[1:]}_{b_type[1:]}_{c_type[1:]}.cu"
else:
filename = f"sm80_kernel_{a_type[1:]}_{b_type[1:]}_{c_type[1:]}.cu"
filename = filename.lower()
with open(os.path.join(os.path.dirname(__file__), filename), "w") as f:
f.write(file_content)
if not SUPPORT_FP8 and kernel_selector_str != FILE_HEAD_COMMENT:
kernel_selector_str += (
"else if (a_type == vllm::kFE4M3fn)\n"
" TORCH_CHECK(false, "
'"marlin kernel with fp8 activation is not built.");'
)
with open(os.path.join(os.path.dirname(__file__), "kernel_selector.h"), "w") as f:
f.write(kernel_selector_str)
if __name__ == "__main__":
remove_old_kernels()
generate_new_kernels()