mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 16:42:46 +08:00
Signed-off-by: George Nagy II <george.nagy0969@gmail.com> Signed-off-by: Chen Zhang <zhangch99@outlook.com>
272 lines
10 KiB
Python
272 lines
10 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import json
|
|
import logging
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Sequence
|
|
from contextlib import AsyncExitStack
|
|
from typing import TYPE_CHECKING, Optional, Union
|
|
|
|
from openai_harmony import Author, Message, Role, StreamState, TextContent
|
|
|
|
from vllm.entrypoints.harmony_utils import (
|
|
get_encoding, get_streamable_parser_for_assistant, render_for_completion)
|
|
from vllm.entrypoints.tool import Tool
|
|
from vllm.entrypoints.tool_server import ToolServer
|
|
from vllm.outputs import RequestOutput
|
|
|
|
if TYPE_CHECKING:
|
|
from mcp.client import ClientSession
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ConversationContext(ABC):
|
|
|
|
@abstractmethod
|
|
def append_output(self, output) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
async def call_tool(self) -> list[Message]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def need_builtin_tool_call(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def render_for_completion(self) -> list[int]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
async def init_tool_sessions(self, tool_server: Optional[ToolServer],
|
|
exit_stack: AsyncExitStack) -> None:
|
|
pass
|
|
|
|
|
|
class SimpleContext(ConversationContext):
|
|
|
|
def __init__(self):
|
|
self.last_output = None
|
|
|
|
def append_output(self, output) -> None:
|
|
self.last_output = output
|
|
|
|
def need_builtin_tool_call(self) -> bool:
|
|
return False
|
|
|
|
async def call_tool(self) -> list[Message]:
|
|
raise NotImplementedError("Should not be called.")
|
|
|
|
def render_for_completion(self) -> list[int]:
|
|
raise NotImplementedError("Should not be called.")
|
|
|
|
async def init_tool_sessions(self, tool_server: Optional[ToolServer],
|
|
exit_stack: AsyncExitStack) -> None:
|
|
pass
|
|
|
|
|
|
class HarmonyContext(ConversationContext):
|
|
|
|
def __init__(
|
|
self,
|
|
messages: list,
|
|
available_tools: list[str],
|
|
):
|
|
self._messages = messages
|
|
self.available_tools = available_tools
|
|
self._tool_sessions: dict[str, Union[ClientSession, Tool]] = {}
|
|
|
|
self.parser = get_streamable_parser_for_assistant()
|
|
self.num_init_messages = len(messages)
|
|
self.num_prompt_tokens = 0
|
|
self.num_output_tokens = 0
|
|
# TODO(woosuk): Implement the following fields.
|
|
self.num_cached_tokens = 0
|
|
self.num_reasoning_tokens = 0
|
|
|
|
def _update_num_prompt_tokens(self, output: RequestOutput):
|
|
if output.prompt_token_ids and len(output.prompt_token_ids) > 0:
|
|
# NOTE: with built-in tools, there might be multiple rounds in
|
|
# the conversation, with the full conversation being resent
|
|
# as new prompt each time. Hence the sum.
|
|
self.num_prompt_tokens += len(output.prompt_token_ids)
|
|
|
|
def _update_num_cached_tokens(self, output: RequestOutput):
|
|
if output.num_cached_tokens is not None:
|
|
#Similar to num_prompt_tokens
|
|
self.num_cached_tokens += output.num_cached_tokens
|
|
|
|
def _update_num_output_tokens(self, token_ids: Sequence[int]):
|
|
self.num_output_tokens += len(token_ids)
|
|
|
|
def _update_num_reasoning_tokens(self, token_ids: Sequence[int]):
|
|
# Count tokens that are part of reasoning content (analysis channel
|
|
# or tool-directed messages like python/browser calls)
|
|
is_analysis = self.parser.current_channel == "analysis"
|
|
is_tool_call = (self.parser.current_recipient is not None and
|
|
(self.parser.current_recipient.startswith("python") or
|
|
self.parser.current_recipient.startswith("browser.")))
|
|
if is_analysis or is_tool_call:
|
|
self.num_reasoning_tokens += len(token_ids)
|
|
|
|
def append_output(self, output) -> None:
|
|
if isinstance(output, RequestOutput):
|
|
self._update_num_prompt_tokens(output)
|
|
self._update_num_cached_tokens(output)
|
|
output_token_ids = output.outputs[0].token_ids
|
|
self._update_num_output_tokens(output_token_ids)
|
|
self.parser = get_streamable_parser_for_assistant()
|
|
for token_id in output_token_ids:
|
|
self.parser.process(token_id)
|
|
# Check if the current token is part of reasoning content
|
|
self._update_num_reasoning_tokens([token_id])
|
|
output_msgs = self.parser.messages
|
|
else:
|
|
# Tool output.
|
|
output_msgs = output
|
|
self._messages.extend(output_msgs)
|
|
|
|
@property
|
|
def messages(self) -> list:
|
|
return self._messages
|
|
|
|
def need_builtin_tool_call(self) -> bool:
|
|
last_msg = self.messages[-1]
|
|
recipient = last_msg.recipient
|
|
return recipient is not None and (recipient.startswith("browser.")
|
|
or recipient.startswith("python"))
|
|
|
|
async def call_tool(self) -> list[Message]:
|
|
if not self.messages:
|
|
return []
|
|
last_msg = self.messages[-1]
|
|
recipient = last_msg.recipient
|
|
if recipient is not None:
|
|
if recipient.startswith("browser."):
|
|
return await self.call_search_tool(
|
|
self._tool_sessions["browser"], last_msg)
|
|
elif recipient.startswith("python"):
|
|
return await self.call_python_tool(
|
|
self._tool_sessions["python"], last_msg)
|
|
raise ValueError("No tool call found")
|
|
|
|
def render_for_completion(self) -> list[int]:
|
|
return render_for_completion(self.messages)
|
|
|
|
async def call_search_tool(self, tool_session: Union["ClientSession",
|
|
Tool],
|
|
last_msg: Message) -> list[Message]:
|
|
if isinstance(tool_session, Tool):
|
|
return await tool_session.get_result(self)
|
|
tool_name = last_msg.recipient.split(".")[1]
|
|
args = json.loads(last_msg.content[0].text)
|
|
result = await tool_session.call_tool(tool_name, args)
|
|
result_str = result.content[0].text
|
|
content = TextContent(text=result_str)
|
|
author = Author(role=Role.TOOL, name=last_msg.recipient)
|
|
return [
|
|
Message(author=author, content=[content], recipient=Role.ASSISTANT)
|
|
]
|
|
|
|
async def call_python_tool(self, tool_session: Union["ClientSession",
|
|
Tool],
|
|
last_msg: Message) -> list[Message]:
|
|
if isinstance(tool_session, Tool):
|
|
return await tool_session.get_result(self)
|
|
param = {
|
|
"code": last_msg.content[0].text,
|
|
}
|
|
result = await tool_session.call_tool("python", param)
|
|
result_str = result.content[0].text
|
|
|
|
content = TextContent(text=result_str)
|
|
author = Author(role=Role.TOOL, name="python")
|
|
|
|
return [
|
|
Message(author=author,
|
|
content=[content],
|
|
channel=last_msg.channel,
|
|
recipient=Role.ASSISTANT)
|
|
]
|
|
|
|
async def init_tool_sessions(self, tool_server: Optional[ToolServer],
|
|
exit_stack: AsyncExitStack) -> None:
|
|
if tool_server:
|
|
for tool_name in self.available_tools:
|
|
if tool_name not in self._tool_sessions:
|
|
self._tool_sessions[
|
|
tool_name] = await exit_stack.enter_async_context(
|
|
tool_server.new_session(tool_name))
|
|
|
|
|
|
class StreamingHarmonyContext(HarmonyContext):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.last_output = None
|
|
|
|
self.parser = get_streamable_parser_for_assistant()
|
|
self.encoding = get_encoding()
|
|
self.last_tok = None
|
|
self.first_tok_of_message = True
|
|
|
|
@property
|
|
def messages(self) -> list:
|
|
return self.parser.messages
|
|
|
|
def append_output(self, output) -> None:
|
|
if isinstance(output, RequestOutput):
|
|
# append_output is called for each output token in streaming case,
|
|
# so we only want to add the prompt tokens once for each message.
|
|
if self.first_tok_of_message:
|
|
self._update_num_prompt_tokens(output)
|
|
self._update_num_cached_tokens(output)
|
|
# Reset self.first_tok_of_message if needed:
|
|
# if the current token is the last one of the current message
|
|
# (finished=True), then the next token processed will mark the
|
|
# beginning of a new message
|
|
self.first_tok_of_message = output.finished
|
|
tok = output.outputs[0].token_ids[0]
|
|
self.parser.process(tok)
|
|
self._update_num_output_tokens(output.outputs[0].token_ids)
|
|
# Check if the current token is part of reasoning content
|
|
self._update_num_reasoning_tokens([tok])
|
|
self.last_tok = tok
|
|
else:
|
|
# Handle the case of tool output in direct message format
|
|
assert len(output) == 1, "Tool output should be a single message"
|
|
msg = output[0]
|
|
# Sometimes the recipient is not set for tool messages,
|
|
# so we set it to "assistant"
|
|
if msg.author.role == Role.TOOL and msg.recipient is None:
|
|
msg.recipient = "assistant"
|
|
toks = self.encoding.render(msg)
|
|
for tok in toks:
|
|
self.parser.process(tok)
|
|
self.last_tok = toks[-1]
|
|
|
|
def is_expecting_start(self) -> bool:
|
|
return self.parser.state == StreamState.EXPECT_START
|
|
|
|
def is_assistant_action_turn(self) -> bool:
|
|
return self.last_tok in self.encoding.stop_tokens_for_assistant_actions(
|
|
)
|
|
|
|
def render_for_completion(self) -> list[int]:
|
|
# now this list of tokens as next turn's starting tokens
|
|
# `<|start|>assistant``,
|
|
# we need to process them in parser.
|
|
rendered_tokens = super().render_for_completion()
|
|
|
|
last_n = -1
|
|
to_process = []
|
|
while rendered_tokens[last_n] != self.last_tok:
|
|
to_process.append(rendered_tokens[last_n])
|
|
last_n -= 1
|
|
for tok in reversed(to_process):
|
|
self.parser.process(tok)
|
|
|
|
return rendered_tokens
|