Harry Mellor 97d1c99302
Rename clashing method names for vLLM model protocol (#27583)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-11-12 19:14:33 -08:00

696 lines
23 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable, Mapping, Sequence
from typing import Annotated, Literal, TypeAlias
import torch
import torch.nn as nn
from transformers import (
BatchFeature,
Blip2Config,
Blip2QFormerConfig,
apply_chunking_to_forward,
)
from vllm.config import CacheConfig, VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (
MultiModalDataDict,
MultiModalFieldConfig,
MultiModalKwargsItems,
)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
PromptIndexTargets,
PromptInsertion,
PromptUpdate,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .blip import BlipVisionModel
from .interfaces import (
MultiModalEmbeddings,
SupportsMultiModal,
SupportsPP,
SupportsQuant,
)
from .utils import AutoWeightsLoader, init_vllm_registered_model, maybe_prefix
class Blip2ImagePixelInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- c: Number of channels (3)
- h: Height of each image
- w: Width of each image
"""
type: Literal["pixel_values"]
data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
class Blip2ImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- f: Image feature size
- h: Hidden size (must match the hidden size of language model backbone)
"""
type: Literal["image_embeds"]
data: Annotated[torch.Tensor, TensorShape("bn", "f", "h")]
Blip2ImageInputs: TypeAlias = Blip2ImagePixelInputs | Blip2ImageEmbeddingInputs
class Blip2QFormerMultiHeadAttention(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: QuantizationConfig | None,
cache_config: CacheConfig | None,
is_cross_attention: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of "
f"the number of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = config.hidden_size // config.num_attention_heads
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.scaling = self.attention_head_size**-0.5
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
kv_hidden_size = config.encoder_hidden_size
else:
kv_hidden_size = config.hidden_size
self.key = nn.Linear(kv_hidden_size, self.all_head_size)
self.value = nn.Linear(kv_hidden_size, self.all_head_size)
self.position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type != "absolute":
raise NotImplementedError(
f"Unsupported position_embedding_type: {self.position_embedding_type}"
)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
x = x.view(*x.size()[:-1], self.num_attention_heads, self.attention_head_size)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.FloatTensor | None = None,
):
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
mixed_query_layer = self.query(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_probs = torch.softmax(attention_scores * self.scaling, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
context_layer = context_layer.view(
*context_layer.size()[:-2], self.all_head_size
)
return context_layer
class Blip2QFormerSelfOutput(nn.Module):
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
hidden_states: torch.Tensor,
input_tensor: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Blip2QFormerAttention(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: QuantizationConfig | None,
cache_config: CacheConfig | None,
is_cross_attention: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.attention = Blip2QFormerMultiHeadAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=is_cross_attention,
prefix=f"{prefix}.attention",
)
self.output = Blip2QFormerSelfOutput(config, prefix=f"{prefix}.output")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.FloatTensor | None = None,
) -> tuple[torch.Tensor]:
self_output = self.attention(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
attention_output = self.output(self_output, hidden_states)
return attention_output
class Blip2QFormerIntermediate(nn.Module):
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = get_act_fn(config.hidden_act)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class Blip2QFormerOutput(nn.Module):
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
hidden_states: torch.Tensor,
input_tensor: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Blip2QFormerLayer(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: QuantizationConfig | None,
cache_config: CacheConfig | None,
layer_idx: int,
prefix: str = "",
) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = Blip2QFormerAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.attention",
)
self.layer_idx = layer_idx
if layer_idx % config.cross_attention_frequency == 0:
self.crossattention = Blip2QFormerAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=True,
prefix=f"{prefix}.crossattention",
)
self.has_cross_attention = True
else:
self.has_cross_attention = False
self.intermediate_query = Blip2QFormerIntermediate(
config, prefix=f"{prefix}.intermediate_query"
)
self.output_query = Blip2QFormerOutput(config, prefix=f"{prefix}.output_query")
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
query_length: int,
):
attention_output = self.attention(hidden_states)
if query_length > 0:
query_attention_output = attention_output[:, :query_length, :]
if self.has_cross_attention:
query_attention_output = self.crossattention(
query_attention_output,
encoder_hidden_states=encoder_hidden_states,
)
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk_query,
self.chunk_size_feed_forward,
self.seq_len_dim,
query_attention_output,
)
if attention_output.shape[1] > query_length:
layer_output_text = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output[:, query_length:, :],
)
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
else:
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
return layer_output
def feed_forward_chunk(self, attention_output: torch.Tensor) -> torch.Tensor:
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
def feed_forward_chunk_query(self, attention_output: torch.Tensor) -> torch.Tensor:
intermediate_output = self.intermediate_query(attention_output)
layer_output = self.output_query(intermediate_output, attention_output)
return layer_output
class Blip2QFormerEncoder(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: QuantizationConfig | None,
cache_config: CacheConfig | None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList(
[
Blip2QFormerLayer(
config,
quant_config=quant_config,
cache_config=cache_config,
layer_idx=layer_idx,
prefix=f"{prefix}.layer.{layer_idx}",
)
for layer_idx in range(config.num_hidden_layers)
]
)
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
query_length: int,
) -> torch.Tensor:
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
hidden_states = layer_module(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
query_length=query_length,
)
return hidden_states
# Adapted from https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/models/blip_2/modeling_blip_2.py#L1025
class Blip2QFormerModel(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: QuantizationConfig | None,
cache_config: CacheConfig | None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.encoder = Blip2QFormerEncoder(
config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.encoder",
)
def forward(
self,
query_embeds: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
) -> torch.Tensor:
query_length = query_embeds.shape[1]
embedding_output = self.layernorm(query_embeds)
embedding_output = self.dropout(embedding_output)
sequence_output = self.encoder(
embedding_output,
encoder_hidden_states=encoder_hidden_states,
query_length=query_length,
)
return sequence_output
class Blip2ProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(Blip2Config)
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": 1}
def get_num_image_tokens(self) -> int:
hf_config = self.get_hf_config()
return hf_config.num_query_tokens
class Blip2DummyInputsBuilder(BaseDummyInputsBuilder[Blip2ProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
hf_config = self.info.get_hf_config()
vision_config = hf_config.vision_config
max_image_size = vision_config.image_size
num_images = mm_counts.get("image", 0)
image_overrides = mm_options.get("image") if mm_options else None
return {
"image": self._get_dummy_images(
width=max_image_size,
height=max_image_size,
num_images=num_images,
overrides=image_overrides,
)
}
class Blip2MultiModalProcessor(BaseMultiModalProcessor[Blip2ProcessingInfo]):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
if not mm_data:
# HF processor always adds placeholders even when there's no image
tokenizer = self.info.get_tokenizer()
prompt_ids = tokenizer.encode(prompt)
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
return super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
tokenizer = self.info.get_tokenizer()
vocab = tokenizer.get_vocab()
image_token_id = vocab["<image>"]
num_image_tokens = self.info.get_num_image_tokens()
image_tokens = [image_token_id] * num_image_tokens
return [
PromptInsertion(
modality="image",
target=PromptIndexTargets.start(),
insertion=image_tokens,
)
]
@MULTIMODAL_REGISTRY.register_processor(
Blip2MultiModalProcessor,
info=Blip2ProcessingInfo,
dummy_inputs=Blip2DummyInputsBuilder,
)
class Blip2ForConditionalGeneration(
nn.Module, SupportsMultiModal, SupportsPP, SupportsQuant
):
merge_by_field_config = True
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return None
raise ValueError("Only image modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
# TODO: Optionally initializes this for supporting embeddings.
self.vision_model = BlipVisionModel(config.vision_config, quant_config)
self.query_tokens = nn.Parameter(
torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)
)
self.qformer = Blip2QFormerModel(
config.qformer_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.qformer",
)
self.language_projection = nn.Linear(
config.qformer_config.hidden_size,
config.text_config.hidden_size,
bias=True,
)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors
)
def _parse_and_validate_image_input(
self, **kwargs: object
) -> Blip2ImageInputs | None:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
expected_h = expected_w = self.config.vision_config.image_size
return Blip2ImagePixelInputs(
type="pixel_values",
data=pixel_values,
resolve_bindings={"h": expected_h, "w": expected_w},
)
if image_embeds is not None:
return Blip2ImageEmbeddingInputs(
type="image_embeds",
data=image_embeds,
)
raise AssertionError("This line should be unreachable.")
def _image_pixels_to_features(
self, vision_model: BlipVisionModel, pixel_values: torch.Tensor
) -> torch.Tensor:
# NOTE: we skip the step to select the vision feature layer since
# this is already done inside the vision tower
image_features = vision_model(pixel_values)
return image_features
def _process_image_pixels(self, inputs: Blip2ImagePixelInputs) -> torch.Tensor:
assert self.vision_model is not None
pixel_values = inputs["data"]
return self._image_pixels_to_features(self.vision_model, pixel_values)
def _process_image_input(self, image_input: Blip2ImageInputs) -> torch.Tensor:
if image_input["type"] == "image_embeds":
return image_input["data"]
assert self.vision_model is not None
image_features = self._process_image_pixels(image_input)
query_tokens = self.query_tokens.expand(image_features.shape[0], -1, -1)
query_output = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_features,
)
return self.language_projection(query_output)
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return []
vision_embeddings = self._process_image_input(image_input)
return vision_embeddings
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
) -> IntermediateTensors:
"""Run forward pass for BLIP-2.
One key thing to understand is the `input_ids` already accounts for the
positions of the to-be-inserted image embeddings.
Concretely, consider a text prompt:
`"Question: What's the content of the image? Answer:"`.
Tokenizer outputs:
`[2, 45641, 35, 653, 18, 5, 1383, 9, 5, 2274, 116, 31652, 35]`.
To reserve space in KV cache, we have to insert placeholder tokens
before they are inputted to the model, so the input processor prepends
dummy tokens (denoted as `50265`), resulting in:
`[50265, ..., 50265, 2, 45641, 35, ..., 31652, 35]`.
We insert 32 tokens since it corresponds to the number of query
embeddings outputted by the Q-Former and inputted to the language model.
This way, the `positions` and `attn_metadata` are consistent
with the `input_ids`.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
Info:
[`Blip2ImageInputs`][vllm.model_executor.models.blip2.Blip2ImageInputs]
"""
if intermediate_tensors is not None:
inputs_embeds = None
hidden_states = self.language_model.model(
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
return self.language_model.compute_logits(hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)