mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 01:55:36 +08:00
391 lines
14 KiB
Python
391 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/bloom/modeling_bloom.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only BLOOM model compatible with HuggingFace weights."""
|
|
|
|
import math
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import BloomConfig
|
|
|
|
from vllm.attention.layer import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import (
|
|
get_pp_group,
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
)
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsPP, SupportsQuant
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(total_num_heads))
|
|
base = torch.tensor(
|
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))),
|
|
dtype=torch.float32,
|
|
)
|
|
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
|
|
slopes = torch.pow(base, powers)
|
|
|
|
if closest_power_of_2 != total_num_heads:
|
|
extra_base = torch.tensor(
|
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
|
|
dtype=torch.float32,
|
|
)
|
|
num_remaining_heads = min(
|
|
closest_power_of_2, total_num_heads - closest_power_of_2
|
|
)
|
|
extra_powers = torch.arange(
|
|
start=1, end=1 + 2 * num_remaining_heads, step=2, dtype=torch.int32
|
|
)
|
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
|
return slopes
|
|
|
|
|
|
class BloomAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: BloomConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.total_num_heads = config.n_head
|
|
self.head_dim = self.hidden_size // self.total_num_heads
|
|
assert self.head_dim * self.total_num_heads == self.hidden_size
|
|
|
|
tp_world_size = get_tensor_model_parallel_world_size()
|
|
assert self.total_num_heads % tp_world_size == 0
|
|
self.num_heads = self.total_num_heads // tp_world_size
|
|
|
|
self.query_key_value = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.query_key_value",
|
|
)
|
|
self.dense = RowParallelLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.dense",
|
|
)
|
|
|
|
# Create the alibi slopes and slice them.
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
head_start = tp_rank * self.num_heads
|
|
head_end = (tp_rank + 1) * self.num_heads
|
|
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
|
|
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
|
|
|
|
scaling = self.head_dim**-0.5
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
scaling,
|
|
alibi_slopes=alibi_slopes,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
del position_ids # Unused.
|
|
qkv, _ = self.query_key_value(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.dense(attn_output)
|
|
return output
|
|
|
|
|
|
class BloomMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: BloomConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
self.dense_h_to_4h = ColumnParallelLinear(
|
|
hidden_size,
|
|
4 * hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.dense_h_to_4h",
|
|
)
|
|
self.gelu_impl = get_act_fn("gelu")
|
|
self.dense_4h_to_h = RowParallelLinear(
|
|
4 * hidden_size,
|
|
hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.dense_4h_to_h",
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x, _ = self.dense_h_to_4h(x)
|
|
x = self.gelu_impl(x)
|
|
x, _ = self.dense_4h_to_h(x)
|
|
return x
|
|
|
|
|
|
class BloomBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: BloomConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
|
|
self.input_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.self_attention = BloomAttention(
|
|
config, cache_config, quant_config, prefix=f"{prefix}.self_attention"
|
|
)
|
|
self.post_attention_layernorm = nn.LayerNorm(
|
|
hidden_size, eps=config.layer_norm_epsilon
|
|
)
|
|
self.mlp = BloomMLP(config, quant_config, prefix=f"{prefix}.mlp")
|
|
self.apply_residual_connection_post_layernorm = (
|
|
config.apply_residual_connection_post_layernorm
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# Layer norm at the beginning of the transformer layer.
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
|
|
# Layer norm post the self attention.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = hidden_states
|
|
|
|
# Self attention.
|
|
attention_output = self.self_attention(
|
|
position_ids=position_ids,
|
|
hidden_states=layernorm_output,
|
|
)
|
|
attention_output = attention_output + residual
|
|
layernorm_output = self.post_attention_layernorm(attention_output)
|
|
|
|
# Get residual
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = attention_output
|
|
|
|
# MLP.
|
|
output = self.mlp(layernorm_output) + residual
|
|
return output
|
|
|
|
|
|
@support_torch_compile
|
|
class BloomModel(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
|
# Embedding + LN Embedding
|
|
self.word_embeddings = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
self.embed_dim,
|
|
)
|
|
self.word_embeddings_layernorm = nn.LayerNorm(
|
|
self.embed_dim, eps=config.layer_norm_epsilon
|
|
)
|
|
|
|
# Transformer blocks
|
|
self.start_layer, self.end_layer, self.h = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: BloomBlock(
|
|
config, cache_config, quant_config, prefix=prefix
|
|
),
|
|
prefix=f"{prefix}.h",
|
|
)
|
|
|
|
# Final Layer Norm
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states"], config.hidden_size
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.word_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.embed_input_ids(input_ids)
|
|
hidden_states = self.word_embeddings_layernorm(hidden_states)
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
for layer in islice(self.h, self.start_layer, self.end_layer):
|
|
hidden_states = layer(position_ids, hidden_states)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
|
|
if "query_key_value" in name:
|
|
# NOTE: BLOOM's fused QKV's output_dim has the shape of
|
|
# (num_heads * 3 * head_size), while the
|
|
# required shape is (3 * num_heads * head_size).
|
|
# Thus, we need weight conversion.
|
|
output_dim = getattr(param, "output_dim", None)
|
|
num_heads = self.config.num_attention_heads
|
|
if output_dim is not None:
|
|
loaded_weight_shape = loaded_weight.shape
|
|
loaded_weight = loaded_weight.view(
|
|
loaded_weight_shape[:output_dim]
|
|
+ (num_heads, 3, -1)
|
|
+ loaded_weight_shape[output_dim + 1 :]
|
|
)
|
|
loaded_weight = loaded_weight.transpose(output_dim, output_dim + 1)
|
|
loaded_weight = loaded_weight.reshape(loaded_weight_shape)
|
|
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
|
|
return loaded_params
|
|
|
|
|
|
class BloomForCausalLM(nn.Module, SupportsPP, SupportsQuant):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.transformer = BloomModel(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "transformer")
|
|
)
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head = self.transformer.word_embeddings
|
|
else:
|
|
self.lm_head = ParallelLMHead(
|
|
self.config.vocab_size,
|
|
self.config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.transformer.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.transformer.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
hidden_states = self.transformer(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self, skip_prefixes=["lm_head.weight"])
|
|
weights = _add_transformer_prefix(weights)
|
|
return loader.load_weights(weights)
|
|
|
|
|
|
def _add_transformer_prefix(
|
|
weights: Iterable[tuple[str, torch.Tensor]],
|
|
) -> Iterable[tuple[str, torch.Tensor]]:
|
|
for name, tensor in weights:
|
|
if not name.startswith("transformer."):
|
|
name = "transformer." + name
|
|
yield name, tensor
|