mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 07:35:00 +08:00
473 lines
17 KiB
Python
473 lines
17 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# Adapted from vllm/model_executor/models/aya_vision.py
|
|
"""Command-A-Vision (Cohere2Vision) multimodal model implementation for vLLM."""
|
|
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Literal
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import BatchFeature, PretrainedConfig
|
|
from transformers.models.cohere2_vision import Cohere2VisionConfig
|
|
from transformers.models.cohere2_vision.image_processing_cohere2_vision_fast import ( # noqa: E501
|
|
get_optimal_tiled_canvas,
|
|
)
|
|
from transformers.models.cohere2_vision.processing_cohere2_vision import (
|
|
Cohere2VisionProcessor,
|
|
)
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.model_executor.layers.activation import MulAndSilu
|
|
from vllm.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.quantization.awq import AWQConfig
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import MultiModalDataDict, MultiModalKwargsItems
|
|
from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
MultiModalFieldConfig,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
PromptUpdateDetails,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .siglip import SiglipVisionModel
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
class Cohere2VisionImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- np: The total number of patches over each image over each prompt in
|
|
the batch
|
|
- c: Number of channels
|
|
- h: Height of each image patch
|
|
- w: Width of each image patch
|
|
- bn: Batch size * number of images
|
|
"""
|
|
|
|
type: Literal["pixel_values"]
|
|
|
|
pixel_values: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("np", 3, "h", "w"),
|
|
]
|
|
|
|
num_patches: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("bn"),
|
|
]
|
|
|
|
|
|
class Cohere2VisionMultiModalProjector(nn.Module):
|
|
"""Multimodal projector that maps vision features to text embedding space.
|
|
|
|
Uses pixel shuffle downsampling followed by SwiGLU activation.
|
|
"""
|
|
|
|
def __init__(self, config: Cohere2VisionConfig, prefix: str = ""):
|
|
super().__init__()
|
|
self.downsample_factor = config.downsample_factor
|
|
|
|
# Input dimension after pixel shuffle downsampling
|
|
input_dim = config.vision_config.hidden_size * (config.downsample_factor**2)
|
|
# MergedColumnParallelLinear expects the intermediate size to be a list
|
|
# of sizes, so that it will load the weights as two separate linear
|
|
# layers before applying any parallelism.
|
|
# We need to divide the alignment intermediate size by 2 because
|
|
# the weights are merged weights of two linear layers for SwiGLU.
|
|
self.intermediate_size = config.alignment_intermediate_size // 2
|
|
|
|
self.linear_1 = MergedColumnParallelLinear(
|
|
input_dim,
|
|
[self.intermediate_size] * 2,
|
|
bias=True,
|
|
return_bias=False,
|
|
prefix=f"{prefix}.linear_1",
|
|
)
|
|
self.act = MulAndSilu()
|
|
self.linear_2 = RowParallelLinear(
|
|
self.intermediate_size,
|
|
config.text_config.hidden_size,
|
|
bias=True,
|
|
return_bias=False,
|
|
prefix=f"{prefix}.linear_2",
|
|
)
|
|
|
|
def forward(self, image_features):
|
|
image_features = self.pixel_shuffle(image_features)
|
|
hidden_states = self.linear_1(image_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
def pixel_shuffle(self, image_features: torch.Tensor) -> torch.Tensor:
|
|
"""Apply pixel shuffle downsampling to reduce spatial dimensions.
|
|
|
|
Args:
|
|
image_features: Input tensor of shape [B, S, D] where S = H*W
|
|
|
|
Returns:
|
|
Downsampled tensor with increased channel dimension
|
|
"""
|
|
height = width = int(image_features.shape[1] ** 0.5)
|
|
x = image_features.reshape(image_features.shape[0], width, height, -1)
|
|
n, h, w, c = x.size()
|
|
scale_factor = 1.0 / self.downsample_factor
|
|
nh = int(h * scale_factor)
|
|
nw = int(w * scale_factor)
|
|
x = x.reshape(n, nh, self.downsample_factor, nw, self.downsample_factor, c)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous()
|
|
x = x.reshape(n, nh, nw, -1)
|
|
return x
|
|
|
|
|
|
class Cohere2VisionProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self) -> Cohere2VisionConfig:
|
|
return self.ctx.get_hf_config(Cohere2VisionConfig)
|
|
|
|
def get_hf_processor(self, **kwargs: object) -> Cohere2VisionProcessor:
|
|
return self.ctx.get_hf_processor(Cohere2VisionProcessor, **kwargs)
|
|
|
|
def get_image_processor(self, **kwargs: object):
|
|
return self.get_hf_processor(**kwargs).image_processor
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"image": None}
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
image_processor = self.get_image_processor()
|
|
height = image_processor.size["height"]
|
|
width = image_processor.size["width"]
|
|
max_patches = image_processor.max_patches
|
|
return ImageSize(height=height * max_patches, width=width)
|
|
|
|
def get_num_patches(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
processor: Cohere2VisionProcessor | None,
|
|
) -> int:
|
|
"""
|
|
Calculate the number of image patches for a given image.
|
|
Uses the HF processor to determine the actual number of patches.
|
|
"""
|
|
if processor is None:
|
|
processor = self.get_hf_processor()
|
|
|
|
image_processor = processor.image_processor
|
|
|
|
# The current implementation of get_number_of_image_patches
|
|
# is incorrect, so we patch it here.
|
|
# TODO: Revert once
|
|
# https://github.com/huggingface/transformers/pull/40312 is released.
|
|
# return image_processor.get_number_of_image_patches(image_height,
|
|
# image_width, {})
|
|
|
|
min_patches = image_processor.min_patches
|
|
max_patches = image_processor.max_patches
|
|
patch_size = image_processor.size
|
|
crop_to_patches = image_processor.crop_to_patches
|
|
|
|
if not crop_to_patches:
|
|
return 1
|
|
|
|
num_columns, num_rows = get_optimal_tiled_canvas(
|
|
(image_height, image_width),
|
|
(patch_size["height"], patch_size["width"]),
|
|
min_patches,
|
|
max_patches,
|
|
)
|
|
num_patches = num_columns * num_rows
|
|
if num_patches > 1:
|
|
num_patches += 1 # Thumbnail image
|
|
|
|
return num_patches
|
|
|
|
|
|
class Cohere2VisionDummyInputsBuilder(
|
|
BaseDummyInputsBuilder[Cohere2VisionProcessingInfo]
|
|
):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
image_token = processor.image_token
|
|
|
|
return image_token * num_images
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
image_size = self.info.get_image_size_with_most_features()
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
|
|
return {
|
|
"image": self._get_dummy_images(
|
|
width=image_size.width,
|
|
height=image_size.height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
)
|
|
}
|
|
|
|
|
|
class Cohere2VisionMultiModalProcessor(
|
|
BaseMultiModalProcessor[Cohere2VisionProcessingInfo]
|
|
):
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt,
|
|
mm_data,
|
|
mm_kwargs,
|
|
tok_kwargs,
|
|
)
|
|
|
|
# Ensure num_patches is available for proper tensor splitting
|
|
if (
|
|
"num_patches" not in processed_outputs
|
|
and (images := mm_data.get("images")) is not None
|
|
):
|
|
hf_processor = self.info.get_hf_processor(**mm_kwargs)
|
|
|
|
# Fallback calculation if HF processor didn't provide num_patches
|
|
parsed_images = (
|
|
self._get_data_parser()
|
|
.parse_mm_data({"image": images})
|
|
.get_items("image", ImageProcessorItems)
|
|
)
|
|
|
|
num_patches = [
|
|
self.info.get_num_patches(
|
|
image_width=parsed_images.get_image_size(i).width,
|
|
image_height=parsed_images.get_image_size(i).height,
|
|
processor=hf_processor,
|
|
)
|
|
for i in range(len(parsed_images))
|
|
]
|
|
processed_outputs["num_patches"] = torch.tensor(num_patches)
|
|
|
|
return processed_outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
num_patches = hf_inputs.get("num_patches", torch.empty(0))
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.flat_from_sizes("image", num_patches),
|
|
num_patches=MultiModalFieldConfig.batched("image"),
|
|
image_embeds=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
image_token = hf_processor.image_token
|
|
img_tokens_per_tile = int(hf_processor.patch_size**2)
|
|
img_line_break_token = hf_processor.img_line_break_token
|
|
boi_token = hf_processor.boi_token
|
|
eoi_token = hf_processor.eoi_token
|
|
|
|
def get_replacement(item_idx: int):
|
|
images = mm_items.get_items("image", ImageProcessorItems)
|
|
image_size: ImageSize = images.get_image_size(item_idx)
|
|
|
|
num_patches = self.info.get_num_patches(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
processor=hf_processor,
|
|
)
|
|
patch_tokens = image_token * img_tokens_per_tile + img_line_break_token
|
|
repl = f"{boi_token}{patch_tokens * num_patches}{eoi_token}"
|
|
|
|
return PromptUpdateDetails.select_text(repl, image_token)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=image_token,
|
|
replacement=get_replacement,
|
|
)
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Cohere2VisionMultiModalProcessor,
|
|
info=Cohere2VisionProcessingInfo,
|
|
dummy_inputs=Cohere2VisionDummyInputsBuilder,
|
|
)
|
|
class Cohere2VisionForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
|
merge_by_field_config = True
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"model.vision_tower.": "vision_tower.",
|
|
"model.multi_modal_projector.": "multi_modal_projector.",
|
|
"model.language_model.": "language_model.model.",
|
|
"lm_head.": "language_model.lm_head.",
|
|
}
|
|
)
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config: Cohere2VisionConfig = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.multimodal_config = multimodal_config
|
|
self._patch_quant_config(config, quant_config)
|
|
|
|
self.vision_tower = SiglipVisionModel(
|
|
config.vision_config,
|
|
quant_config,
|
|
prefix=maybe_prefix(prefix, "vision_tower"),
|
|
)
|
|
self.vocab_size = config.text_config.vocab_size
|
|
self.multi_modal_projector = Cohere2VisionMultiModalProjector(
|
|
config, prefix=maybe_prefix(prefix, "multi_modal_projector")
|
|
)
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
architectures=config.text_config.architectures,
|
|
)
|
|
|
|
@property
|
|
def dtype(self):
|
|
return next(self.parameters()).dtype
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
def _process_image_input(
|
|
self, image_input: Cohere2VisionImagePixelInputs, **kwargs
|
|
) -> list[torch.Tensor]:
|
|
"""Process image pixels through vision tower and projector.
|
|
|
|
Args:
|
|
image_input: Validated image input containing pixel values and
|
|
patch counts
|
|
|
|
Returns:
|
|
List of flattened image embeddings, one per image
|
|
"""
|
|
assert self.vision_tower is not None, "Vision tower is required"
|
|
|
|
pixel_values = image_input["pixel_values"]
|
|
num_patches = image_input["num_patches"]
|
|
|
|
# Extract visual features
|
|
image_features = self.vision_tower(pixel_values)
|
|
|
|
# Project to text embedding space
|
|
image_embeds = self.multi_modal_projector(image_features)
|
|
|
|
# Split and flatten embeddings per image
|
|
return [e.flatten(0, 2) for e in image_embeds.split(num_patches.tolist())]
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> Cohere2VisionImagePixelInputs | None:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
num_patches = kwargs.pop("num_patches", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
assert image_embeds is None, "Cohere2Vision does not support image_embeds."
|
|
|
|
if pixel_values is None:
|
|
return None
|
|
|
|
return Cohere2VisionImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
num_patches=num_patches,
|
|
resolve_bindings={
|
|
"h": self.config.vision_config.image_size,
|
|
"w": self.config.vision_config.image_size,
|
|
},
|
|
)
|
|
|
|
def _patch_quant_config(
|
|
self, config: PretrainedConfig, quant_config: QuantizationConfig
|
|
):
|
|
# the awq models from OpenGVLab missing `modules_to_not_convert`
|
|
# patch the quant_config to add `modules_to_not_convert` back
|
|
if isinstance(quant_config, AWQConfig):
|
|
text_config = config.text_config
|
|
llm_quant_config = getattr(text_config, "quantization_config", None)
|
|
if (not quant_config.modules_to_not_convert) and (
|
|
llm_quant_config is not None
|
|
):
|
|
quant_config.modules_to_not_convert.append("vision_tower")
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return []
|
|
|
|
return self._process_image_input(image_input, **kwargs)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|