Jee Jee Li 39e63dec7c
[LoRA] Cleanup LoRA unused code (#29611)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-11-28 22:52:58 -08:00

477 lines
17 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only IBM Granite model compatible with HuggingFace weights."""
from collections.abc import Iterable
from itertools import islice
import torch
from torch import nn
from transformers import GraniteConfig
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
is_pp_missing_parameter,
make_layers,
maybe_prefix,
)
class GraniteMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: QuantizationConfig | None = None,
bias: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=hidden_size,
output_sizes=[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class GraniteAttention(nn.Module):
def __init__(
self,
config: GraniteConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position_embeddings: int = 8192,
quant_config: QuantizationConfig | None = None,
bias: bool = False,
cache_config: CacheConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
self.head_dim = getattr(config, "head_dim", None)
if self.head_dim is None:
self.head_dim = self.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = config.attention_multiplier
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
rope_parameters=config.rope_parameters,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class GraniteDecoderLayer(nn.Module):
def __init__(
self,
config: GraniteConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.residual_multiplier = config.residual_multiplier
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
# Support abacusai/Smaug-72B-v0.1 with attention_bias
# Support internlm/internlm-7b with bias
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False
)
self.self_attn = GraniteAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(
config, "num_key_value_heads", config.num_attention_heads
),
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=attention_bias,
cache_config=cache_config,
prefix=f"{prefix}.self_attn",
)
self.mlp = GraniteMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
hidden_states = residual + hidden_states * self.residual_multiplier
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states * self.residual_multiplier
return hidden_states
@support_torch_compile
class GraniteModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
if get_pp_group().is_first_rank or (
config.tie_word_embeddings and get_pp_group().is_last_rank
):
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
)
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: GraniteDecoderLayer(
config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
),
prefix=f"{prefix}.layers",
)
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_input_ids(input_ids)
hidden_states *= self.config.embedding_multiplier
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states = layer(positions, hidden_states)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{
"hidden_states": hidden_states,
}
)
hidden_states = self.norm(hidden_states)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if self.quant_config is not None and (
scale_name := self.quant_config.get_cache_scale(name)
):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
loaded_weight = (
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
)
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class GraniteForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.model = GraniteModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
logit_scale = getattr(config, "logit_scale", 1.0)
if hasattr(config, "logits_scaling"):
logit_scale /= config.logits_scaling
self.logits_processor = LogitsProcessor(
config.vocab_size, scale=logit_scale
)
else:
self.lm_head = PPMissingLayer()
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
model_output = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return model_output
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype, device: torch.device
) -> IntermediateTensors:
return IntermediateTensors(
{
"hidden_states": torch.zeros(
(batch_size, self.config.hidden_size), dtype=dtype, device=device
),
}
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
# With tie_word_embeddings, we can skip lm_head.weight
# The weight might appear unnecessarily in the files if the model is
# processed with quantization, LoRA, fine-tuning, etc.
skip_prefixes = ["lm_head."] if self.config.tie_word_embeddings else None
loader = AutoWeightsLoader(
self,
skip_prefixes=skip_prefixes,
)
return loader.load_weights(weights)