mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 01:55:36 +08:00
1043 lines
39 KiB
Python
1043 lines
39 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# coding=utf-8
|
|
# Copyright 2024 The HunYuan team.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only HunYuan model compatible with HuggingFace weights."""
|
|
|
|
import typing
|
|
from collections.abc import Callable, Iterable
|
|
from itertools import islice
|
|
|
|
import regex as re
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.attention.backends.abstract import AttentionType
|
|
from vllm.attention.layer import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig, get_current_vllm_config
|
|
from vllm.distributed import (
|
|
get_ep_group,
|
|
get_pp_group,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce,
|
|
)
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import SharedFusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import MixtureOfExperts, SupportsLoRA, SupportsPP
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
is_pp_missing_parameter,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
def _is_moe(config: PretrainedConfig) -> bool:
|
|
num_experts = getattr(config, "num_experts", None)
|
|
if isinstance(num_experts, int):
|
|
return num_experts > 1
|
|
if isinstance(num_experts, list) and num_experts:
|
|
# Ensure all elements are integers before calling max.
|
|
if all(isinstance(e, int) for e in num_experts):
|
|
return max(num_experts) > 1
|
|
else:
|
|
return False
|
|
return False
|
|
|
|
|
|
def _get_cla_factor(config: PretrainedConfig) -> int:
|
|
if not getattr(config, "use_cla", False):
|
|
return 1
|
|
return getattr(config, "cla_share_factor", 1)
|
|
|
|
|
|
class HunYuanMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
prefix: str = "",
|
|
reduce_results: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
input_size=hidden_size,
|
|
output_sizes=[intermediate_size] * 2,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
input_size=intermediate_size,
|
|
output_size=hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
reduce_results=reduce_results,
|
|
)
|
|
if hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class HunYuanAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
max_position_embeddings: int = 8192,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
cache_config: CacheConfig | None = None,
|
|
prefix: str = "",
|
|
layer_id: int = -1,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
|
|
if hasattr(config, "head_dim") and config.head_dim:
|
|
self.head_dim = config.head_dim
|
|
elif hasattr(config, "attention_head_dim"):
|
|
self.head_dim = config.attention_head_dim
|
|
else:
|
|
self.head_dim = self.hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.use_qk_norm = getattr(config, "use_qk_norm", False)
|
|
self.layer_id = layer_id
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=hidden_size,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.total_num_heads,
|
|
total_num_kv_heads=self.total_num_kv_heads,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
input_size=self.total_num_heads * self.head_dim,
|
|
output_size=hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
rope_parameters=config.rope_parameters,
|
|
is_neox_style=True,
|
|
)
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
if self.use_qk_norm:
|
|
self.query_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
self.key_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_states: tuple[torch.Tensor] | None = None,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
ori_k = k
|
|
if self.use_qk_norm:
|
|
q = self.query_layernorm(
|
|
q.view(-1, self.num_heads, self.head_dim).contiguous()
|
|
)
|
|
k = self.key_layernorm(
|
|
k.view(-1, self.num_kv_heads, self.head_dim).contiguous()
|
|
)
|
|
|
|
attn_output = self.attn(q, k, v)
|
|
# For o_proj
|
|
attn_output = attn_output.view(q.shape[0], -1)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output, (ori_k, v)
|
|
|
|
|
|
class HunYuanCrossAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
max_position_embeddings: int = 8192,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
cache_config: CacheConfig | None = None,
|
|
prefix: str = "",
|
|
layer_id: int = -1,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
|
if hasattr(config, "head_dim"):
|
|
self.head_dim = config.head_dim
|
|
elif hasattr(config, "attention_head_dim"):
|
|
self.head_dim = config.attention_head_dim
|
|
else:
|
|
self.head_dim = self.hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.use_qk_norm = getattr(config, "use_qk_norm", False)
|
|
self.layer_id = layer_id
|
|
|
|
self.q_proj = ColumnParallelLinear(
|
|
hidden_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.q_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
input_size=self.total_num_heads * self.head_dim,
|
|
output_size=hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
rope_parameters=config.rope_parameters,
|
|
is_neox_style=True,
|
|
)
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
attn_type=AttentionType.ENCODER_DECODER,
|
|
)
|
|
|
|
if self.use_qk_norm:
|
|
self.query_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
self.key_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_states: tuple[torch.Tensor] | None = None,
|
|
) -> torch.Tensor:
|
|
assert kv_states is not None
|
|
ori_k, v = kv_states # use last layer kv,
|
|
k = ori_k
|
|
q, _ = self.q_proj(hidden_states)
|
|
k_tmp = torch.empty_like(k) # Todo: reduant rotary embedding
|
|
q, _ = self.rotary_emb(positions, q, k_tmp)
|
|
if self.use_qk_norm:
|
|
q = self.query_layernorm(
|
|
q.view(-1, self.num_heads, self.head_dim).contiguous()
|
|
)
|
|
k = self.key_layernorm(
|
|
k.view(-1, self.num_kv_heads, self.head_dim).contiguous()
|
|
)
|
|
|
|
attn_output = self.attn(q, k, v)
|
|
# For o_proj
|
|
attn_output = attn_output.view(q.shape[0], -1)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output, (ori_k, v)
|
|
|
|
|
|
class HunYuanSparseMoeBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
layer_id: int = -1,
|
|
prefix: str = "",
|
|
enable_eplb: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.ep_group = get_ep_group().device_group
|
|
self.ep_rank = get_ep_group().rank_in_group
|
|
self.ep_size = self.ep_group.size()
|
|
self.n_routed_experts = config.num_experts
|
|
|
|
if self.tp_size > config.num_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {config.num_experts}."
|
|
)
|
|
|
|
# Get layer_id topk if config.moe_topk is a list
|
|
if isinstance(config.moe_topk, list):
|
|
assert layer_id >= 0
|
|
assert len(config.moe_topk) > layer_id
|
|
top_k = config.moe_topk[layer_id]
|
|
else:
|
|
top_k = config.moe_topk
|
|
|
|
# If it is moe, moe_intermediate_size is preferred
|
|
intermediate_size = config.intermediate_size
|
|
if config.moe_intermediate_size is not None:
|
|
intermediate_size = (
|
|
config.moe_intermediate_size
|
|
if isinstance(config.moe_intermediate_size, int)
|
|
else config.moe_intermediate_size[layer_id]
|
|
)
|
|
|
|
# Load balancing settings.
|
|
vllm_config = get_current_vllm_config()
|
|
eplb_config = vllm_config.parallel_config.eplb_config
|
|
self.enable_eplb = enable_eplb
|
|
|
|
self.n_logical_experts = self.n_routed_experts
|
|
self.n_redundant_experts = eplb_config.num_redundant_experts
|
|
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
|
|
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
|
|
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
|
|
self.physical_expert_end = (
|
|
self.physical_expert_start + self.n_local_physical_experts
|
|
)
|
|
|
|
self.gate = ReplicatedLinear(
|
|
config.hidden_size,
|
|
config.num_experts,
|
|
bias=False,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.gate",
|
|
)
|
|
if config.use_mixed_mlp_moe > 0:
|
|
# Get layer_id num_shared_expert if config.num_shared_expert is
|
|
# a list.
|
|
if isinstance(config.num_shared_expert, list):
|
|
assert layer_id >= 0
|
|
assert len(config.num_shared_expert) > layer_id
|
|
num_shared_expert = config.num_shared_expert[layer_id]
|
|
else:
|
|
num_shared_expert = config.num_shared_expert
|
|
|
|
self.shared_mlp = HunYuanMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size * num_shared_expert,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
reduce_results=False,
|
|
)
|
|
else:
|
|
self.shared_mlp = None
|
|
|
|
self.experts = SharedFusedMoE(
|
|
shared_experts=self.shared_mlp,
|
|
num_experts=self.n_routed_experts,
|
|
top_k=top_k,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=top_k > 1,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.experts",
|
|
enable_eplb=self.enable_eplb,
|
|
num_redundant_experts=self.n_redundant_experts,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
# NOTE: hidden_states can have either 1D or 2D shape.
|
|
orig_shape = hidden_states.shape
|
|
hidden_dim = hidden_states.shape[-1]
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states)
|
|
final_hidden_states = self.experts(
|
|
hidden_states=hidden_states, router_logits=router_logits
|
|
)
|
|
if self.shared_mlp is not None:
|
|
final_hidden_states = final_hidden_states[0] + final_hidden_states[1]
|
|
|
|
if self.tp_size > 1:
|
|
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
|
|
|
|
return final_hidden_states.view(orig_shape)
|
|
|
|
|
|
class HunYuanDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
layer_id: int = -1,
|
|
enable_eplb: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
assert layer_id >= 0
|
|
self.layer_id = layer_id
|
|
self.hidden_size = config.hidden_size
|
|
self.intermediate_size = (
|
|
config.intermediate_size
|
|
if isinstance(config.intermediate_size, int)
|
|
else config.intermediate_size[layer_id]
|
|
)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
|
config, "bias", False
|
|
)
|
|
cla_factor = _get_cla_factor(config)
|
|
attention_type = (
|
|
AttentionType.ENCODER_DECODER
|
|
if layer_id >= 0 and layer_id % cla_factor != 0
|
|
else AttentionType.DECODER
|
|
)
|
|
if attention_type == AttentionType.DECODER:
|
|
self.self_attn = HunYuanAttention(
|
|
config=config,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=getattr(
|
|
config, "num_key_value_heads", config.num_attention_heads
|
|
),
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
bias=attention_bias,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
layer_id=layer_id,
|
|
)
|
|
elif attention_type == AttentionType.ENCODER_DECODER:
|
|
self.self_attn = HunYuanCrossAttention(
|
|
config=config,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=getattr(
|
|
config, "num_key_value_heads", config.num_attention_heads
|
|
),
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
bias=attention_bias,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
layer_id=layer_id,
|
|
)
|
|
else:
|
|
raise RuntimeError(f"Unsupported attention type: {attention_type}")
|
|
|
|
if _is_moe(config):
|
|
self.mlp = HunYuanSparseMoeBlock(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
layer_id=layer_id,
|
|
prefix=f"{prefix}.mlp",
|
|
enable_eplb=enable_eplb,
|
|
)
|
|
else:
|
|
self.mlp = HunYuanMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
bias=getattr(config, "mlp_bias", False),
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
kv_states: tuple[torch.Tensor] | None = None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
hidden_states, ori_kv_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_states=kv_states,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual, ori_kv_states
|
|
|
|
|
|
@support_torch_compile(
|
|
dynamic_arg_dims={
|
|
"input_ids": 0,
|
|
# positions is of shape (xd, seq_len) if xdrope is enabled for hunyuan-vl,
|
|
# otherwise (seq_len, ).
|
|
"positions": -1,
|
|
"intermediate_tensors": 0,
|
|
"inputs_embeds": 0,
|
|
}
|
|
)
|
|
class HunYuanModel(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
eplb_config = vllm_config.parallel_config.eplb_config
|
|
enable_eplb = vllm_config.parallel_config.enable_eplb
|
|
self.num_redundant_experts = eplb_config.num_redundant_experts
|
|
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.padding_idx = config.pad_token_id
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
if get_pp_group().is_first_rank or (
|
|
config.tie_word_embeddings and get_pp_group().is_last_rank
|
|
):
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: HunYuanDecoderLayer(
|
|
config=config,
|
|
layer_id=int(prefix.split(".")[-1]),
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
enable_eplb=enable_eplb,
|
|
),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor | None,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.embed_input_ids(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
cla_factor = _get_cla_factor(self.config)
|
|
prev_kv_states = None
|
|
for i, layer in enumerate(
|
|
islice(self.layers, self.start_layer, self.end_layer)
|
|
):
|
|
hidden_states, residual, kv_states = layer(
|
|
positions,
|
|
hidden_states,
|
|
residual,
|
|
prev_kv_states,
|
|
)
|
|
|
|
if getattr(self.config, "use_cla", False) and i % cla_factor == 0:
|
|
prev_kv_states = kv_states
|
|
else:
|
|
prev_kv_states = None
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def _split_qkv_weight(self, qkv: torch.Tensor):
|
|
num_attention_heads = self.config.num_attention_heads
|
|
num_kv_heads = getattr(
|
|
self.config, "num_key_value_heads", self.config.num_attention_heads
|
|
)
|
|
num_key_value_groups = num_attention_heads // num_kv_heads
|
|
hidden_size = self.config.hidden_size
|
|
|
|
if hasattr(self.config, "head_dim"):
|
|
attention_head_dim = self.config.head_dim
|
|
elif hasattr(self.config, "attention_head_dim"):
|
|
attention_head_dim = self.config.attention_head_dim
|
|
else:
|
|
attention_head_dim = self.config.hidden_size // num_attention_heads
|
|
|
|
qkv = qkv.reshape(
|
|
num_kv_heads, num_key_value_groups + 2, attention_head_dim, hidden_size
|
|
)
|
|
q, k, v = torch.split(qkv, (num_key_value_groups, 1, 1), dim=1)
|
|
q = q.reshape(-1, hidden_size)
|
|
k = k.reshape(-1, hidden_size)
|
|
v = v.reshape(-1, hidden_size)
|
|
return torch.concat((q, k, v))
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
if _is_moe(self.config):
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
return SharedFusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.num_experts,
|
|
num_redundant_experts=self.num_redundant_experts,
|
|
)
|
|
else:
|
|
return []
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
|
cla_factor = _get_cla_factor(self.config)
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
|
|
num_attention_heads = self.config.num_attention_heads
|
|
num_kv_heads = getattr(
|
|
self.config, "num_key_value_heads", self.config.num_attention_heads
|
|
)
|
|
split_params_mapping = [
|
|
(".gate_up_proj", ".gate_and_up_proj", 2, [(1, 1), (0, 1)], None),
|
|
(
|
|
".qkv_proj",
|
|
".qkv_proj",
|
|
num_attention_heads + num_kv_heads * 2,
|
|
[("q", num_attention_heads), ("k", num_kv_heads), ("v", num_kv_heads)],
|
|
self._split_qkv_weight,
|
|
),
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
expert_params_mapping = self.get_expert_mapping()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
if "gate_proj_bias" in name:
|
|
name = name.replace("gate_proj_bias", "gate_proj.bias")
|
|
if "up_proj_bias" in name:
|
|
name = name.replace("up_proj_bias", "up_proj.bias")
|
|
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
|
# Models trained using ColossalAI may include these tensors in
|
|
# the checkpoint. Skip them.
|
|
continue
|
|
# With tie_word_embeddings, we can skip lm_head.weight
|
|
# The weight might appear unnecessarily in the files if the model is
|
|
# processed with quantization, LoRA, fine-tuning, etc.
|
|
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
|
continue
|
|
if self.quant_config is not None and (
|
|
scale_name := self.quant_config.get_cache_scale(name)
|
|
):
|
|
# Loading kv cache scales for compressed-tensors quantization
|
|
param = params_dict[scale_name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
loaded_weight = loaded_weight[0]
|
|
weight_loader(param, loaded_weight)
|
|
continue
|
|
|
|
is_found = False
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
if "mlp.experts" in name:
|
|
continue
|
|
# cross layer only have q_proj, skip qkv pack
|
|
if weight_name == ".q_proj":
|
|
match = re.search(r"layers\.\d+", name)
|
|
if match:
|
|
layer_id = int(match.group(0).split(".")[-1])
|
|
if cla_factor > 1 and layer_id % cla_factor != 0:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
loaded_params.add(name)
|
|
is_found = True
|
|
break
|
|
if is_found:
|
|
continue
|
|
|
|
for (
|
|
param_name,
|
|
weight_name,
|
|
den,
|
|
split_param,
|
|
func,
|
|
) in split_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
assert loaded_weight.shape[0] % den == 0
|
|
units = loaded_weight.shape[0] // den
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
offset = 0
|
|
for shard_id, num in split_param:
|
|
new_offset = offset + num * units
|
|
if func:
|
|
weight_loader(
|
|
param, func(loaded_weight)[offset:new_offset], shard_id
|
|
)
|
|
else:
|
|
weight_loader(param, loaded_weight[offset:new_offset], shard_id)
|
|
offset = new_offset
|
|
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
is_expert_weight = False
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
# this is an expert weight and should not be
|
|
# attempted to load as other weights later
|
|
is_expert_weight = True
|
|
|
|
# Do not modify `name` since the loop may continue here
|
|
# Instead, create a new variable
|
|
name_mapped = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name_mapped, self):
|
|
continue
|
|
param = params_dict[name_mapped]
|
|
# We should ask the weight loader to return success or not
|
|
# here since otherwise we may skip experts with other
|
|
# available replicas.
|
|
weight_loader = typing.cast(
|
|
Callable[..., bool], param.weight_loader
|
|
)
|
|
success = weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name_mapped,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
return_success=True,
|
|
)
|
|
if success:
|
|
name = name_mapped
|
|
break
|
|
else:
|
|
if is_expert_weight:
|
|
# We've checked that this is an expert weight
|
|
# However it's not mapped locally to this rank
|
|
# So we simply skip it
|
|
continue
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
if "mlp.gate.wg." in name:
|
|
name = name.replace("wg.", "")
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class HunyuanV1ModelBase(nn.Module, SupportsLoRA, SupportsPP):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
|
|
self.model = HunYuanModel(vllm_config=vllm_config, prefix="model")
|
|
if get_pp_group().is_last_rank:
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if config.tie_word_embeddings:
|
|
self.lm_head.weight = self.model.embed_tokens.weight
|
|
|
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(
|
|
config.vocab_size, scale=logit_scale
|
|
)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
model_output = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return model_output
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def make_empty_intermediate_tensors(
|
|
self, batch_size: int, dtype: torch.dtype, device: torch.device
|
|
) -> IntermediateTensors:
|
|
return IntermediateTensors(
|
|
{
|
|
"hidden_states": torch.zeros(
|
|
(batch_size, self.config.hidden_size), dtype=dtype, device=device
|
|
),
|
|
"residual": torch.zeros(
|
|
(batch_size, self.config.hidden_size), dtype=dtype, device=device
|
|
),
|
|
}
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(weights)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
|
|
class HunYuanMoEV1Base(HunyuanV1ModelBase, MixtureOfExperts):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
# Set MoE hyperparameters
|
|
self.expert_weights = []
|
|
self.num_expert_groups = 1
|
|
self.moe_layers = []
|
|
example_layer = None
|
|
for layer in self.model.layers:
|
|
if isinstance(layer, PPMissingLayer):
|
|
continue
|
|
|
|
assert isinstance(layer, HunYuanDecoderLayer)
|
|
if isinstance(layer.mlp, HunYuanSparseMoeBlock):
|
|
example_layer = layer.mlp
|
|
self.moe_layers.append(layer.mlp.experts)
|
|
|
|
if example_layer is None:
|
|
raise RuntimeError("No HunYuanMoE layer found in model.layers.")
|
|
|
|
self.num_moe_layers = len(self.moe_layers)
|
|
self.num_logical_experts = example_layer.n_logical_experts
|
|
self.num_physical_experts = example_layer.n_physical_experts
|
|
self.num_local_physical_experts = example_layer.n_local_physical_experts
|
|
self.num_routed_experts = example_layer.n_routed_experts
|
|
self.num_redundant_experts = example_layer.n_redundant_experts
|
|
|
|
def update_physical_experts_metadata(
|
|
self,
|
|
num_physical_experts: int,
|
|
num_local_physical_experts: int,
|
|
) -> None:
|
|
assert self.num_local_physical_experts == num_local_physical_experts
|
|
self.num_physical_experts = num_physical_experts
|
|
self.num_local_physical_experts = num_local_physical_experts
|
|
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
|
|
for layer in self.model.layers:
|
|
if isinstance(layer.mlp, HunYuanSparseMoeBlock):
|
|
moe = layer.mlp
|
|
moe.n_local_physical_experts = num_local_physical_experts
|
|
moe.n_physical_experts = num_physical_experts
|
|
moe.n_redundant_experts = self.num_redundant_experts
|
|
moe.experts.update_expert_map()
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
return self.model.get_expert_mapping()
|
|
|
|
|
|
class HunYuanDenseV1Base(HunyuanV1ModelBase):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
|
|
class HunYuanDenseV1ForCausalLM(HunYuanDenseV1Base):
|
|
pass
|
|
|
|
|
|
class HunYuanMoEV1ForCausalLM(HunYuanMoEV1Base):
|
|
pass
|