mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 01:35:01 +08:00
1052 lines
38 KiB
Python
1052 lines
38 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import typing
|
|
from collections.abc import Callable, Iterable
|
|
from typing import Any
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.attention.backends.abstract import AttentionType
|
|
from vllm.attention.layer import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, ParallelConfig, VllmConfig
|
|
from vllm.distributed import (
|
|
get_ep_group,
|
|
get_pp_group,
|
|
get_tensor_model_parallel_world_size,
|
|
get_tp_group,
|
|
tensor_model_parallel_all_gather,
|
|
)
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import SharedFusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.mla import MLAModules, MultiHeadLatentAttentionWrapper
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.model_executor.models.interfaces import (
|
|
MixtureOfExperts,
|
|
SupportsLoRA,
|
|
SupportsPP,
|
|
)
|
|
from vllm.model_executor.models.utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
extract_layer_index,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
sequence_parallel_chunk,
|
|
)
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.config import set_default_rope_theta
|
|
|
|
|
|
def check_ffn_act_fn(act_fn: str):
|
|
if act_fn != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {act_fn}. Only silu is supported for now."
|
|
)
|
|
|
|
|
|
class OpenPanguMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
reduce_results: bool = True,
|
|
is_sequence_parallel=False,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size,
|
|
[intermediate_size] * 2,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
disable_tp=is_sequence_parallel,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
reduce_results=reduce_results,
|
|
disable_tp=is_sequence_parallel,
|
|
prefix=f"{prefix}.down_proj",
|
|
)
|
|
|
|
check_ffn_act_fn(hidden_act)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.down_proj(self.act_fn(self.gate_up_proj(x)[0]))[0]
|
|
|
|
|
|
class OpenPanguMoE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
parallel_config: ParallelConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.tp_rank = get_tp_group().rank_in_group
|
|
|
|
self.routed_scaling_factor = config.routed_scaling_factor
|
|
self.ep_group = get_ep_group().device_group
|
|
self.ep_rank = self.ep_group.rank()
|
|
self.ep_size = self.ep_group.size()
|
|
self.n_routed_experts: int = config.n_routed_experts
|
|
self.n_shared_experts: int = config.n_shared_experts
|
|
|
|
self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe
|
|
check_ffn_act_fn(config.hidden_act)
|
|
|
|
self.gate = ReplicatedLinear(
|
|
config.hidden_size,
|
|
config.n_routed_experts,
|
|
bias=False,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.gate",
|
|
)
|
|
self.gate.e_score_correction_bias = None
|
|
|
|
# Load balancing settings.
|
|
eplb_config = parallel_config.eplb_config
|
|
self.enable_eplb = parallel_config.enable_eplb
|
|
|
|
self.n_redundant_experts = eplb_config.num_redundant_experts
|
|
self.n_logical_experts = self.n_routed_experts
|
|
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
|
|
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
|
|
|
|
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
|
|
self.physical_expert_end = (
|
|
self.physical_expert_start + self.n_local_physical_experts
|
|
)
|
|
|
|
if config.n_shared_experts is not None:
|
|
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
|
self.shared_experts = OpenPanguMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
is_sequence_parallel=self.is_sequence_parallel,
|
|
reduce_results=False,
|
|
prefix=f"{prefix}.shared_experts",
|
|
)
|
|
else:
|
|
self.shared_experts = None
|
|
|
|
self.experts = SharedFusedMoE(
|
|
shared_experts=self.shared_experts,
|
|
num_experts=config.n_routed_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=config.norm_topk_prob,
|
|
quant_config=quant_config,
|
|
use_grouped_topk=True,
|
|
num_expert_group=1,
|
|
topk_group=1,
|
|
prefix=f"{prefix}.experts",
|
|
scoring_func="sigmoid",
|
|
# we do scaling outside, set factor to 1.0 to avoid double mul
|
|
routed_scaling_factor=1.0,
|
|
e_score_correction_bias=self.gate.e_score_correction_bias,
|
|
enable_eplb=self.enable_eplb,
|
|
num_redundant_experts=self.n_redundant_experts,
|
|
is_sequence_parallel=self.is_sequence_parallel,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
num_tokens, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
if self.is_sequence_parallel:
|
|
hidden_states = sequence_parallel_chunk(hidden_states)
|
|
|
|
router_logits, _ = self.gate(hidden_states)
|
|
|
|
fused_moe_out = self.experts(
|
|
hidden_states=hidden_states, router_logits=router_logits
|
|
)
|
|
|
|
shared_output, final_hidden_states = fused_moe_out
|
|
if self.shared_experts is None:
|
|
assert shared_output is None
|
|
|
|
if hidden_states.dtype != torch.float16:
|
|
final_hidden_states *= self.routed_scaling_factor
|
|
elif self.shared_experts is not None:
|
|
assert shared_output is not None
|
|
shared_output *= 1.0 / self.routed_scaling_factor
|
|
|
|
if self.shared_experts is not None:
|
|
assert shared_output is not None
|
|
final_hidden_states += shared_output
|
|
|
|
if self.is_sequence_parallel:
|
|
final_hidden_states = tensor_model_parallel_all_gather(
|
|
final_hidden_states, 0
|
|
)
|
|
final_hidden_states = final_hidden_states[:num_tokens]
|
|
elif self.tp_size > 1:
|
|
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel(
|
|
final_hidden_states
|
|
)
|
|
|
|
return final_hidden_states.view(num_tokens, hidden_dim)
|
|
|
|
|
|
class OpenPanguMLAAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
qk_nope_head_dim: int,
|
|
qk_rope_head_dim: int,
|
|
v_head_dim: int,
|
|
q_lora_rank: int | None,
|
|
kv_lora_rank: int,
|
|
max_position_embeddings: int = 8192,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
self.num_heads = num_heads
|
|
self.qk_nope_head_dim = qk_nope_head_dim
|
|
self.qk_rope_head_dim = qk_rope_head_dim
|
|
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
|
self.v_head_dim = v_head_dim
|
|
self.q_lora_rank = q_lora_rank
|
|
self.kv_lora_rank = kv_lora_rank
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
if num_heads % self.tp_size != 0:
|
|
raise ValueError(
|
|
f"num_heads {num_heads} is not divisible by tp_size {self.tp_size}."
|
|
)
|
|
self.num_local_heads = num_heads // self.tp_size
|
|
|
|
self.scaling = self.qk_head_dim**-0.5
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.prefix = prefix
|
|
|
|
if self.q_lora_rank is not None:
|
|
self.fused_qkv_a_proj = MergedColumnParallelLinear(
|
|
self.hidden_size,
|
|
[self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim],
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fused_qkv_a_proj",
|
|
disable_tp=True,
|
|
)
|
|
self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
|
|
self.q_b_proj = ColumnParallelLinear(
|
|
q_lora_rank,
|
|
self.num_heads * self.qk_head_dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.q_b_proj",
|
|
)
|
|
else:
|
|
self.q_proj = ColumnParallelLinear(
|
|
self.hidden_size,
|
|
self.num_heads * self.qk_head_dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.q_proj",
|
|
)
|
|
self.kv_a_proj_with_mqa = ReplicatedLinear(
|
|
self.hidden_size,
|
|
self.kv_lora_rank + self.qk_rope_head_dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.kv_a_proj_with_mqa",
|
|
)
|
|
|
|
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
|
|
self.kv_b_proj = ColumnParallelLinear(
|
|
self.kv_lora_rank,
|
|
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.kv_b_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
self.num_heads * self.v_head_dim,
|
|
self.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
# TODO: remove hard coding
|
|
set_default_rope_theta(config, default_theta=10000)
|
|
rope_parameters = {
|
|
"rope_theta": config.rope_parameters["rope_theta"],
|
|
"beta_fast": 32,
|
|
"beta_slow": 1,
|
|
"factor": 1,
|
|
"mscale": 1.0,
|
|
"mscale_all_dim": 1.0,
|
|
"original_max_position_embeddings": max_position_embeddings,
|
|
"type": "yarn",
|
|
"rope_type": "deepseek_yarn",
|
|
}
|
|
self.rotary_emb = get_rope(
|
|
qk_rope_head_dim,
|
|
rotary_dim=qk_rope_head_dim,
|
|
max_position=max_position_embeddings,
|
|
rope_parameters=rope_parameters,
|
|
is_neox_style=False,
|
|
)
|
|
|
|
mla_modules = MLAModules(
|
|
kv_a_layernorm=self.kv_a_layernorm,
|
|
kv_b_proj=self.kv_b_proj,
|
|
rotary_emb=self.rotary_emb,
|
|
o_proj=self.o_proj,
|
|
fused_qkv_a_proj=self.fused_qkv_a_proj
|
|
if self.q_lora_rank is not None
|
|
else None,
|
|
kv_a_proj_with_mqa=self.kv_a_proj_with_mqa
|
|
if self.q_lora_rank is None
|
|
else None,
|
|
q_a_layernorm=self.q_a_layernorm if self.q_lora_rank is not None else None,
|
|
q_b_proj=self.q_b_proj if self.q_lora_rank is not None else None,
|
|
q_proj=self.q_proj if self.q_lora_rank is None else None,
|
|
indexer=None,
|
|
is_sparse=False,
|
|
topk_indices_buffer=None,
|
|
)
|
|
|
|
self.mla_attn = MultiHeadLatentAttentionWrapper(
|
|
self.hidden_size,
|
|
self.num_local_heads,
|
|
self.scaling,
|
|
self.qk_nope_head_dim,
|
|
self.qk_rope_head_dim,
|
|
self.v_head_dim,
|
|
self.q_lora_rank,
|
|
self.kv_lora_rank,
|
|
mla_modules,
|
|
cache_config,
|
|
quant_config,
|
|
prefix,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
return self.mla_attn(positions, hidden_states)
|
|
|
|
|
|
class OpenPanguEmbeddedAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
max_position_embeddings: int = 8192,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
bias_o_proj: bool = False,
|
|
cache_config: CacheConfig | None = None,
|
|
prefix: str = "",
|
|
attn_type: str = AttentionType.DECODER,
|
|
) -> None:
|
|
super().__init__()
|
|
layer_idx = extract_layer_index(prefix)
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
if self.total_num_heads % tp_size != 0:
|
|
raise ValueError(
|
|
f"total_num_heads {self.total_num_heads} "
|
|
f"is not divisible by tp_size {tp_size}."
|
|
)
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads > tp_size and self.total_num_kv_heads % tp_size != 0:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel ranks.
|
|
raise ValueError(
|
|
"Number of KV heads is greater than TP size, "
|
|
f"but total_num_kv_heads {self.total_num_kv_heads} "
|
|
f"is not divisible by tp_size {tp_size}."
|
|
)
|
|
elif (
|
|
self.total_num_kv_heads < tp_size and tp_size % self.total_num_kv_heads != 0
|
|
):
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel ranks.
|
|
raise ValueError(
|
|
f"Number of KV heads is less than TP size, but tp_size {tp_size} "
|
|
f"is not divisible by total_num_kv_heads {self.total_num_kv_heads}."
|
|
)
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
head_dim = getattr(config, "head_dim", None)
|
|
if head_dim is None:
|
|
head_dim = self.hidden_size // self.total_num_heads
|
|
self.head_dim = head_dim
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=hidden_size,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.total_num_heads,
|
|
total_num_kv_heads=self.total_num_kv_heads,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
input_size=self.total_num_heads * self.head_dim,
|
|
output_size=hidden_size,
|
|
bias=bias_o_proj,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self._init_rotary_emb(config, quant_config=quant_config)
|
|
|
|
if hasattr(config, "interleaved_sliding_window"):
|
|
interleaved_sliding_window = config.interleaved_sliding_window
|
|
if isinstance(interleaved_sliding_window, int):
|
|
sliding_window = interleaved_sliding_window
|
|
elif isinstance(interleaved_sliding_window, list):
|
|
sw_idx = layer_idx % len(interleaved_sliding_window)
|
|
sliding_window = interleaved_sliding_window[sw_idx]
|
|
else:
|
|
raise ValueError(
|
|
f"{type(interleaved_sliding_window)} "
|
|
"for interleaved_sliding_window is not supported."
|
|
)
|
|
else:
|
|
sliding_window = None
|
|
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
per_layer_sliding_window=sliding_window,
|
|
attn_type=attn_type,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
def _init_rotary_emb(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: QuantizationConfig | None,
|
|
) -> None:
|
|
is_neox_style = True
|
|
is_gguf = quant_config and quant_config.get_name() == "gguf"
|
|
if is_gguf and config.model_type == "PanguEmbedded":
|
|
is_neox_style = False
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position_embeddings,
|
|
rope_parameters=config.rope_parameters,
|
|
is_neox_style=is_neox_style,
|
|
)
|
|
|
|
|
|
class OpenPanguDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
prefix: str,
|
|
vllm_config: VllmConfig,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
if config is None:
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
parallel_config = vllm_config.parallel_config
|
|
|
|
self.hidden_size = config.hidden_size
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
|
|
layer_idx = int(prefix.split(sep=".")[-1])
|
|
self.layer_idx = layer_idx
|
|
|
|
self.use_mla = (
|
|
hasattr(config, "qk_nope_head_dim")
|
|
and hasattr(config, "qk_rope_head_dim")
|
|
and hasattr(config, "v_head_dim")
|
|
and hasattr(config, "kv_lora_rank")
|
|
)
|
|
if self.use_mla:
|
|
self.self_attn = OpenPanguMLAAttention(
|
|
config=config,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
qk_nope_head_dim=config.qk_nope_head_dim,
|
|
qk_rope_head_dim=config.qk_rope_head_dim,
|
|
v_head_dim=config.v_head_dim,
|
|
q_lora_rank=(
|
|
config.q_lora_rank if hasattr(config, "q_lora_rank") else None
|
|
),
|
|
kv_lora_rank=config.kv_lora_rank,
|
|
max_position_embeddings=max_position_embeddings,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
else:
|
|
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
|
config, "bias", False
|
|
)
|
|
bias_o_proj = attention_bias
|
|
if hasattr(config, "qkv_bias"):
|
|
attention_bias = config.qkv_bias
|
|
# By default, PanguEmbedded uses causal attention
|
|
# as it is a decoder-only model.
|
|
# You can override the HF config with `is_causal=False` to enable
|
|
# bidirectional attention, which is used in some embedding models
|
|
if getattr(config, "is_causal", True):
|
|
attn_type = AttentionType.DECODER
|
|
else:
|
|
attn_type = AttentionType.ENCODER_ONLY
|
|
self.self_attn = OpenPanguEmbeddedAttention(
|
|
config=config,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=getattr(
|
|
config, "num_key_value_heads", config.num_attention_heads
|
|
),
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
bias=attention_bias,
|
|
bias_o_proj=bias_o_proj,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
attn_type=attn_type,
|
|
)
|
|
|
|
if (
|
|
getattr(config, "n_routed_experts", None) is not None
|
|
and layer_idx >= config.first_k_dense_replace
|
|
):
|
|
self.mlp = OpenPanguMoE(
|
|
config=config,
|
|
parallel_config=parallel_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
else:
|
|
self.mlp = OpenPanguMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
bias=getattr(config, "mlp_bias", False),
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.routed_scaling_factor = getattr(config, "routed_scaling_factor", 1.0)
|
|
self.num_hidden_layers = config.num_hidden_layers
|
|
self.first_k_dense_replace = getattr(
|
|
config, "first_k_dense_replace", self.num_hidden_layers
|
|
)
|
|
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
self.tp_group = get_tp_group().device_group
|
|
self.sandwich_norm = getattr(config, "sandwich_norm", False)
|
|
if self.sandwich_norm:
|
|
self.pre_mlp_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
self.post_mlp_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> torch.Tensor:
|
|
if residual is None:
|
|
residual = hidden_states.clone()
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
|
|
if (
|
|
self.routed_scaling_factor is not None
|
|
and hidden_states.dtype == torch.float16
|
|
):
|
|
# Fix FP16 overflow
|
|
# We scale both hidden_states and residual before
|
|
# rmsnorm, and rmsnorm result would not affect by scale.
|
|
hidden_states *= 1.0 / self.routed_scaling_factor
|
|
if self.layer_idx == 0:
|
|
# The residual is shared by all layers, we only scale it on
|
|
# first layer.
|
|
residual *= 1.0 / self.routed_scaling_factor
|
|
|
|
if self.sandwich_norm:
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states, residual = self.pre_mlp_layernorm(hidden_states, residual)
|
|
else:
|
|
hidden_states, residual = self.post_attention_layernorm(
|
|
hidden_states, residual
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
if (
|
|
self.routed_scaling_factor is not None
|
|
and isinstance(self.mlp, OpenPanguMLP)
|
|
and hidden_states.dtype == torch.float16
|
|
):
|
|
hidden_states *= 1.0 / self.routed_scaling_factor
|
|
|
|
if self.sandwich_norm:
|
|
hidden_states = self.post_mlp_layernorm(hidden_states)
|
|
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class OpenPanguModel(nn.Module):
|
|
fall_back_to_pt_during_load = False
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
eplb_config = vllm_config.parallel_config.eplb_config
|
|
self.config = config
|
|
self.num_redundant_experts = eplb_config.num_redundant_experts
|
|
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
if get_pp_group().is_first_rank or (
|
|
config.tie_word_embeddings and get_pp_group().is_last_rank
|
|
):
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.embed_tokens",
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: OpenPanguDecoderLayer(config, prefix, vllm_config),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.embed_input_ids(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for i in range(self.start_layer, self.end_layer):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(positions, hidden_states, residual)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def load_attn_mlp_weight(
|
|
self,
|
|
attn_mlp_replace_mapping: list[tuple[str, str, int]],
|
|
params_dict: dict[str, Any],
|
|
weight_name: str,
|
|
loaded_weight: torch.Tensor,
|
|
loaded_params: set[str],
|
|
) -> bool:
|
|
for param_name, origin_name, shard_id in attn_mlp_replace_mapping:
|
|
if origin_name not in weight_name or (
|
|
("mlp.experts." in weight_name) and weight_name not in params_dict
|
|
):
|
|
continue
|
|
weight_name_mapped = weight_name.replace(origin_name, param_name)
|
|
if (
|
|
param_name == "fused_qkv_a_proj"
|
|
and weight_name_mapped not in params_dict
|
|
):
|
|
continue
|
|
else:
|
|
weight_name = weight_name_mapped
|
|
if weight_name.endswith(".bias") and weight_name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(weight_name, self):
|
|
continue
|
|
|
|
param = params_dict[weight_name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
loaded_params.add(weight_name)
|
|
return True
|
|
return False
|
|
|
|
def load_expert_weight(
|
|
self,
|
|
expert_merge_mapping: list[tuple[str, str, int, str]],
|
|
params_dict: dict[str, Any],
|
|
weight_name: str,
|
|
loaded_weight: torch.Tensor,
|
|
loaded_params: set[str],
|
|
flag_dict: dict[str, bool],
|
|
) -> bool:
|
|
for mapping in expert_merge_mapping:
|
|
param_name, origin_name, expert_id, shard_id = mapping
|
|
if origin_name not in weight_name:
|
|
continue
|
|
flag_dict["is_expert_weight"] = True
|
|
weight_name_mapped = weight_name.replace(origin_name, param_name)
|
|
if is_pp_missing_parameter(weight_name_mapped, self):
|
|
continue
|
|
param = params_dict[weight_name_mapped]
|
|
weight_loader = typing.cast(Callable[..., bool], param.weight_loader)
|
|
success = weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
weight_name_mapped,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
return_success=True,
|
|
)
|
|
if success:
|
|
weight_name = weight_name_mapped
|
|
loaded_params.add(weight_name_mapped)
|
|
return True
|
|
return False
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
attn_mlp_replace_mapping = [
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".fused_qkv_a_proj", ".q_a_proj", 0),
|
|
(".fused_qkv_a_proj", ".kv_a_proj_with_mqa", 1),
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
has_experts = hasattr(self.config, "n_routed_experts")
|
|
if has_experts:
|
|
expert_merge_mapping = SharedFusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.n_routed_experts,
|
|
num_redundant_experts=self.num_redundant_experts,
|
|
)
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
|
continue
|
|
|
|
if (
|
|
"layers" in name
|
|
and hasattr(self.config, "num_nextn_predict_layers")
|
|
and (self.config.num_nextn_predict_layers > 0)
|
|
):
|
|
layer_idx = int(name.split("layers.")[-1].split(".")[0])
|
|
mtp_idx = layer_idx - self.config.num_hidden_layers
|
|
if mtp_idx >= 0 and mtp_idx < self.config.num_nextn_predict_layers:
|
|
continue # skip spec decode layers for main model
|
|
|
|
flag_dict = {"is_expert_weight": False}
|
|
if (
|
|
self.load_attn_mlp_weight(
|
|
attn_mlp_replace_mapping,
|
|
params_dict,
|
|
name,
|
|
loaded_weight,
|
|
loaded_params,
|
|
)
|
|
or has_experts
|
|
and self.load_expert_weight(
|
|
expert_merge_mapping,
|
|
params_dict,
|
|
name,
|
|
loaded_weight,
|
|
loaded_params,
|
|
flag_dict,
|
|
)
|
|
):
|
|
continue
|
|
else:
|
|
if flag_dict["is_expert_weight"]:
|
|
continue
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class OpenPanguModelBase(nn.Module, SupportsPP, SupportsLoRA):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"],
|
|
}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
|
|
self.fuse_qkv_a_proj = (
|
|
hasattr(config, "q_lora_rank") and config.q_lora_rank is not None
|
|
)
|
|
if self.fuse_qkv_a_proj:
|
|
self.packed_modules_mapping["fused_qkv_a_proj"] = [
|
|
"q_a_proj",
|
|
"kv_a_proj_with_mqa",
|
|
]
|
|
|
|
self.model = OpenPanguModel(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if config.tie_word_embeddings:
|
|
self.lm_head.weight = self.model.embed_tokens.weight
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(weights)
|
|
|
|
|
|
class OpenPanguMoEModel(OpenPanguModelBase, MixtureOfExperts):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
config = vllm_config.model_config.hf_config
|
|
|
|
# Set MoE hyperparameters
|
|
self.expert_weights = []
|
|
self.num_moe_layers = config.num_hidden_layers - config.first_k_dense_replace
|
|
self.num_expert_groups = 1
|
|
|
|
self.moe_layers = []
|
|
example_moe = None
|
|
for layer in self.model.layers:
|
|
if isinstance(layer, PPMissingLayer):
|
|
continue
|
|
|
|
assert isinstance(layer, OpenPanguDecoderLayer)
|
|
if isinstance(layer.mlp, OpenPanguMoE):
|
|
# Pick last one layer since the first ones may be dense layers.
|
|
example_moe = layer.mlp
|
|
self.moe_layers.append(layer.mlp.experts)
|
|
|
|
if example_moe is None:
|
|
raise RuntimeError("No MOE layer found in model.layers.")
|
|
|
|
self.num_logical_experts = example_moe.n_logical_experts
|
|
self.num_physical_experts = example_moe.n_physical_experts
|
|
self.num_local_physical_experts = example_moe.n_local_physical_experts
|
|
self.n_routed_experts = example_moe.n_routed_experts
|
|
self.n_shared_experts = example_moe.n_shared_experts
|
|
self.num_redundant_experts = example_moe.n_redundant_experts
|
|
|
|
def update_physical_experts_metadata(
|
|
self,
|
|
num_physical_experts: int,
|
|
num_local_physical_experts: int,
|
|
) -> None:
|
|
assert self.num_local_physical_experts == num_local_physical_experts
|
|
self.num_physical_experts = num_physical_experts
|
|
self.num_local_physical_experts = num_local_physical_experts
|
|
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
|
|
for layer in self.model.layers:
|
|
if isinstance(layer.mlp, OpenPanguMoE):
|
|
moe = layer.mlp
|
|
moe.n_local_physical_experts = num_local_physical_experts
|
|
moe.n_physical_experts = num_physical_experts
|
|
moe.n_redundant_experts = self.num_redundant_experts
|
|
moe.experts.update_expert_map()
|
|
|
|
|
|
class OpenPanguEmbeddedModel(OpenPanguModelBase):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
|
|
class PanguEmbeddedForCausalLM(OpenPanguEmbeddedModel):
|
|
pass
|
|
|
|
|
|
class PanguUltraMoEForCausalLM(OpenPanguMoEModel):
|
|
pass
|