Randy Chen 36e0c8f7da
[Feature] Add vllm bench CLI (#13993)
Signed-off-by: Randy Chen <acad.randyjhc@gmail.com>
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2025-03-12 00:31:48 +00:00

82 lines
2.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# The CLI entrypoint to vLLM.
import os
import signal
import sys
import vllm.entrypoints.cli.benchmark.main
import vllm.entrypoints.cli.openai
import vllm.entrypoints.cli.serve
import vllm.version
from vllm.logger import init_logger
from vllm.utils import FlexibleArgumentParser
logger = init_logger(__name__)
CMD_MODULES = [
vllm.entrypoints.cli.openai,
vllm.entrypoints.cli.serve,
vllm.entrypoints.cli.benchmark.main,
]
def register_signal_handlers():
def signal_handler(sig, frame):
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTSTP, signal_handler)
def env_setup():
# The safest multiprocessing method is `spawn`, as the default `fork` method
# is not compatible with some accelerators. The default method will be
# changing in future versions of Python, so we should use it explicitly when
# possible.
#
# We only set it here in the CLI entrypoint, because changing to `spawn`
# could break some existing code using vLLM as a library. `spawn` will cause
# unexpected behavior if the code is not protected by
# `if __name__ == "__main__":`.
#
# References:
# - https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# - https://pytorch.org/docs/stable/notes/multiprocessing.html#cuda-in-multiprocessing
# - https://pytorch.org/docs/stable/multiprocessing.html#sharing-cuda-tensors
# - https://docs.habana.ai/en/latest/PyTorch/Getting_Started_with_PyTorch_and_Gaudi/Getting_Started_with_PyTorch.html?highlight=multiprocessing#torch-multiprocessing-for-dataloaders
if "VLLM_WORKER_MULTIPROC_METHOD" not in os.environ:
logger.debug("Setting VLLM_WORKER_MULTIPROC_METHOD to 'spawn'")
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
def main():
env_setup()
parser = FlexibleArgumentParser(description="vLLM CLI")
parser.add_argument('-v',
'--version',
action='version',
version=vllm.version.__version__)
subparsers = parser.add_subparsers(required=False, dest="subparser")
cmds = {}
for cmd_module in CMD_MODULES:
new_cmds = cmd_module.cmd_init()
for cmd in new_cmds:
cmd.subparser_init(subparsers).set_defaults(
dispatch_function=cmd.cmd)
cmds[cmd.name] = cmd
args = parser.parse_args()
if args.subparser in cmds:
cmds[args.subparser].validate(args)
if hasattr(args, "dispatch_function"):
args.dispatch_function(args)
else:
parser.print_help()
if __name__ == "__main__":
main()