vllm/vllm/env_override.py
2025-11-19 06:13:50 -08:00

379 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
import torch
from vllm.logger import init_logger
from vllm.utils.torch_utils import is_torch_equal
logger = init_logger(__name__)
# set some common config/environment variables that should be set
# for all processes created by vllm and all processes
# that interact with vllm workers.
# they are executed whenever `import vllm` is called.
# see https://github.com/vllm-project/vllm/pull/15951
# it avoids unintentional cuda initialization from torch.cuda.is_available()
os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = "1"
# see https://github.com/vllm-project/vllm/issues/10480
os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
# see https://github.com/vllm-project/vllm/issues/10619
torch._inductor.config.compile_threads = 1
# ===================================================
# torch 2.9 Inductor PythonWrapperCodegen monkeypatch
# ===================================================
# This change monkeypatches memory_plan_reuse in pytorch 2.9.0 to work around
# a test failure for test_multi_graph_piecewise_compile_outputs_equal.
# For more context, see https://github.com/pytorch/pytorch/pull/165514.
def memory_plan_reuse_patched(self):
import torch._inductor.ir as ir
from torch._inductor.codegen.wrapper import (
EnterSubgraphLine,
ExitSubgraphLine,
MemoryPlanningLine,
MemoryPlanningState,
SubgraphPythonWrapperCodegen,
)
from torch._inductor.virtualized import V
def get_output_names(graph_outputs) -> list[str]:
import itertools
names = []
shape_counter = itertools.count(0)
none_counter = itertools.count(0)
for node in graph_outputs:
if isinstance(node, ir.NoneAsConstantBuffer):
names.append(f"{V.graph.name}_none{next(none_counter)}")
elif isinstance(node, ir.ShapeAsConstantBuffer):
names.append(f"{V.graph.name}_shape{next(shape_counter)}")
else:
names.append(node.get_name())
return names
if (
isinstance(V.graph.wrapper_code, SubgraphPythonWrapperCodegen)
and V.graph.wrapper_code.partition_signatures is not None
):
out_names = get_output_names(
V.graph.wrapper_code.partition_signatures.output_nodes
)
else:
out_names = V.graph.get_output_names()
while (
self.lines
and isinstance(self.lines[-1], MemoryPlanningLine)
and self.lines[-1].node.name not in out_names # type: ignore[attr-defined]
):
# these lines will be pointless
self.lines.pop()
# codegen allocations in two passes
planning_states = [MemoryPlanningState()]
past_planning_states = []
for i in range(len(self.lines)):
line = self.lines[i]
if isinstance(line, MemoryPlanningLine):
self.lines[i] = line.plan(planning_states[-1])
elif isinstance(line, EnterSubgraphLine):
planning_states.append(MemoryPlanningState())
elif isinstance(line, ExitSubgraphLine):
past_planning_states.append(planning_states.pop())
past_planning_states.append(planning_states.pop())
assert len(planning_states) == 0
# ===================================================
# torch 2.9 Inductor get_graph_partition_signature monkeypatch
# ===================================================
# This change monkeypatches get_graph_partition_signature in pytorch 2.9.0 to
# fix inductor partition + attention-nvfp4 quant fusion, tested in
# `tests/compile/distributed/test_fusions_e2e.py::test_attn_quant`.
# For more context, see https://github.com/pytorch/pytorch/pull/165815.
def get_graph_partition_signature_patched(
self, partitions, skip_cudagraphs: list[bool]
):
"""
Gets signature for each graph partition, including input nodes, output nodes, and
whether deallocating an input within graph partition.
"""
from torch._inductor import dependencies
from torch._inductor.ir import GraphPartitionSignature, MutationOutput, NoneLayout
from torch._inductor.virtualized import V
from torch.utils._ordered_set import OrderedSet
signatures = []
unmet_output_names = OrderedSet(V.graph.get_output_names())
name_to_node = self.get_name_to_nodes()
def is_none_layout(buf_name: str) -> bool:
"""
Checks if buf_name is NoneLayout. Buffers with NoneLayout is not allocated
so graph partition should not take it as inputs or outputs.
"""
buf = self.name_to_buf.get(buf_name, None)
if buf is None:
return False
if isinstance(buf.node.layout, NoneLayout):
if isinstance(buf.node, MutationOutput) and (
real_name := self.mutation_real_name.get(buf_name, None)
):
return is_none_layout(real_name)
return True
return False
for partition, skip_cudagraph in zip(
reversed(partitions), reversed(skip_cudagraphs)
):
output_names: OrderedSet[str] = OrderedSet()
for node in partition:
output_names.update(node.outputs_by_name.keys())
returned_output_names = output_names.intersection(unmet_output_names)
# all reads/writes are partition inputs except those generated
# within the partition and tensor constants
read_writes = dependencies.ReadWrites.merge_list(
[node.read_writes for node in partition]
)
# WeakDep is fake dependency on unused buffer. It should not appear
# in partition_input_names for inputs that are actually read or written.
partition_input_names = (
OrderedSet(
[
x.name
for x in read_writes.reads | read_writes.writes
if not is_none_layout(x.name)
]
)
- output_names
)
partition_input_names = OrderedSet(
self.mutation_real_name.get(name, name) for name in partition_input_names
)
buffer_names_to_free: OrderedSet[str] = OrderedSet()
for node in partition:
buffer_names_to_free.update(node.last_usage)
# buffer_names_to_free may contain buffers allocated in previous
# graph partitions. These buffers should also be a partition
# input.
extra_input_names = [
name
for name in (buffer_names_to_free - output_names)
if name in name_to_node
]
partition_input_names.update(extra_input_names)
input_nodes = {
name: name_to_node[name]
for name in partition_input_names
if name in name_to_node
}
input_deallocation = {
name: name in buffer_names_to_free
for name in partition_input_names
if name in name_to_node
}
# if an input tensor is not freed in the partition function, it should
# also be returned as an output. This brings benefits to cudagraph
# since the returned output tensor is a cudagraph managed tensor with
# a static tensor address.
extra_output_names = [
name
for name in partition_input_names
if name in name_to_node and name not in buffer_names_to_free
]
returned_output_names.update(extra_output_names)
returned_output_names = OrderedSet(
self.mutation_real_name.get(name, name) for name in returned_output_names
)
output_nodes = [
name_to_node[name]
for name in returned_output_names
if not is_none_layout(name)
]
constant_names = [
name for name in partition_input_names if name in V.graph.constants
]
symbol_inputs = self.get_graph_partition_symbol_inputs(partition, input_nodes)
partition_signature = GraphPartitionSignature(
symbol_inputs,
input_nodes,
output_nodes,
input_deallocation,
skip_cudagraph,
constant_names,
)
signatures.append(partition_signature)
unmet_output_names = partition_input_names.union(
unmet_output_names - returned_output_names
)
return signatures[::-1]
# ========================================
# torch 2.9 Inductor Scheduler monkeypatch
# ========================================
# This change monkeypatches a function in Inductor to work around the following
# bug: https://github.com/vllm-project/vllm/issues/26678
#
# The bug occurs when `use_inductor_graph_partition` is turned on and there
# exists operators inside of `splitting_ops` that have an in-place mutation. In
# vllm, this specifically occurs on the operator
# vllm.unified_attention_with_output. In this case, inductor does not populate
# the inductor IR's `origin_node` field, causing an assertion error when trying
# to access the node's `origin_node` field.
#
# So, we will monkeypatch torch._inductor.scheduler.Scheduler.should_partition
# so that it does not access the inductor IR node's `origin_node` field and just
# returns True if a node is registered as having a custom partition function.
# This is ok for now since vllm's implementation of the custom partition
# functions just return True.
# ========================================
def should_partition_patched(self, node, should_log: bool = False) -> bool:
# This is a patched version of
# torch._inductor.scheduler.Scheduler.should_partition that modifies
# the following piece of code so that we always return True:
# https://github.com/pytorch/pytorch/blob/ecb53078faf86ca1b33277df33b82985675bb011/torch/_inductor/scheduler.py#L4712-L4724
"""Return True if we should partition the inductor graph on this node"""
import torch._inductor.ir as ir
from torch._inductor.scheduler import (
BaseSchedulerNode,
FusedSchedulerNode,
)
from torch._inductor.utils import (
_unstable_customized_partition_wrapper,
is_cudagraph_unsafe_op,
maybe_log_cudagraph_partition,
)
# Allow users to manually specify if a node should be partitioned
# Can only do this for FallbackKernels
ir_node = node.node
if isinstance(ir_node, torch._inductor.ir.FallbackKernel) and (
op := ir_node.op_overload
):
op_overload_packet_name = op.name()
op_overload_name = (
f"{op_overload_packet_name}.{op._overloadname}"
if isinstance(op, torch._ops.OpOverload)
else op_overload_packet_name
)
if (
op_overload_packet_name
in torch._inductor.config.custom_should_partition_ops
or op_overload_name in torch._inductor.config.custom_should_partition_ops
):
assert isinstance(op, torch._ops.OpOverload)
return True
# When not using cudagraphs, keep all kernels in the `call` function
# instead of graph partition functions, since graph partition only brings
# benefit to cudagraph
if (
not torch._inductor.config.triton.cudagraphs
and _unstable_customized_partition_wrapper.wrapper is None
):
return True
# avoid duplicating logs when should_partition is called multiple times
# on the same node
def noop_log(msg: str, node: BaseSchedulerNode | None) -> None:
return
log_partition_reason = maybe_log_cudagraph_partition if should_log else noop_log
if isinstance(node, FusedSchedulerNode):
return any(self.should_partition(snode) for snode in node.snodes)
assert node.node is not None
if not node.is_gpu():
log_partition_reason("non gpu ops", node=node)
return True
if isinstance(node.node, ir.DeviceCopy):
log_partition_reason("DeviceCopy ops", node=node)
return True
if isinstance(node.node, ir.Conditional):
log_partition_reason("Conditional ops", node=node)
return True
if getattr(node.node, "unbacked_bindings", None):
log_partition_reason("unbacked binding ops", node=node)
return True
if is_cudagraph_unsafe_op(node.node):
log_partition_reason("CUDAGraph-unsafe custom ops", node=node)
return True
return False
def _update_scheduler_patched(self) -> None:
# Copied from torch._inductor.graph.GrahLowering._update_scheduler. Patches
# this method so that we can patch Scheduler.should_partition with the
# function above
"""
(Re)initializes the scheduler member. When initializing the scheduler, no CUBIN
files should be generated (to avoid biasing any benchmarks and pessimizing
fusion decisions).
"""
import torch._inductor.config as config
from torch._inductor.scheduler import Scheduler
Scheduler.should_partition = should_partition_patched
Scheduler.get_graph_partition_signature = get_graph_partition_signature_patched
with config.patch("triton.store_cubin", False):
self.scheduler = Scheduler(self.operations)
if is_torch_equal("2.9.0"):
from torch._inductor.codegen.wrapper import PythonWrapperCodegen
from torch._inductor.graph import GraphLowering
from torch.utils._config_module import _Config, _ConfigEntry
# `custom_should_partition_ops` is a new config after 2.9.0. So this would
# not overwrite any user configs.
torch._inductor.config._config["custom_should_partition_ops"] = _ConfigEntry(
_Config(default=[])
)
PythonWrapperCodegen.memory_plan_reuse = memory_plan_reuse_patched
GraphLowering._update_scheduler = _update_scheduler_patched