vllm/tests/models/language/pooling/test_scoring.py
Maximilien de Bayser 39052dbca8
Support token_type_ids in V1 with less code changes (#21985)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
2025-08-10 22:54:59 -07:00

188 lines
5.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import torch.nn.functional as F
CROSS_ENCODER_MODELS = [
"cross-encoder/ms-marco-MiniLM-L-6-v2", # Bert
"BAAI/bge-reranker-v2-m3", # Roberta
]
EMBEDDING_MODELS = [
"sentence-transformers/all-MiniLM-L12-v2",
]
TEXTS_1 = [
"What is the capital of France?",
"What is the capital of Germany?",
]
TEXTS_2 = [
"The capital of France is Paris.",
"The capital of Germany is Berlin.",
]
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
DTYPE = "half"
@pytest.fixture(scope="module", params=CROSS_ENCODER_MODELS)
def model_name(request):
yield request.param
def test_cross_encoder_1_to_1(vllm_runner, hf_runner, model_name):
text_pair = [TEXTS_1[0], TEXTS_2[0]]
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict([text_pair]).tolist()
with vllm_runner(model_name,
runner="pooling",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(text_pair[0], text_pair[1])
assert len(vllm_outputs) == 1
assert len(hf_outputs) == 1
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
def test_cross_encoder_1_to_N(vllm_runner, hf_runner, model_name):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[0], TEXTS_2[1]],
]
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict(text_pairs).tolist()
with vllm_runner(model_name,
runner="pooling",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)
def test_cross_encoder_N_to_N(vllm_runner, hf_runner, model_name):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[1], TEXTS_2[1]],
]
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict(text_pairs).tolist()
with vllm_runner(model_name,
runner="pooling",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)
@pytest.fixture(scope="module", params=EMBEDDING_MODELS)
def emb_model_name(request):
yield request.param
def test_embedding_1_to_1(vllm_runner, hf_runner, emb_model_name):
text_pair = [TEXTS_1[0], TEXTS_2[0]]
with hf_runner(emb_model_name, dtype=DTYPE,
is_sentence_transformer=True) as hf_model:
hf_embeddings = hf_model.encode(text_pair)
hf_outputs = [
F.cosine_similarity(*map(torch.tensor, hf_embeddings), dim=0)
]
with vllm_runner(emb_model_name,
runner="pooling",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(text_pair[0], text_pair[1])
assert len(vllm_outputs) == 1
assert len(hf_outputs) == 1
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
def test_embedding_1_to_N(vllm_runner, hf_runner, emb_model_name):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[0], TEXTS_2[1]],
]
with hf_runner(emb_model_name, dtype=DTYPE,
is_sentence_transformer=True) as hf_model:
hf_embeddings = [
hf_model.encode(text_pair) for text_pair in text_pairs
]
hf_outputs = [
F.cosine_similarity(*map(torch.tensor, pair), dim=0)
for pair in hf_embeddings
]
with vllm_runner(emb_model_name,
runner="pooling",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)
def test_embedding_N_to_N(vllm_runner, hf_runner, emb_model_name):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[1], TEXTS_2[1]],
]
with hf_runner(emb_model_name, dtype=DTYPE,
is_sentence_transformer=True) as hf_model:
hf_embeddings = [
hf_model.encode(text_pair) for text_pair in text_pairs
]
hf_outputs = [
F.cosine_similarity(*map(torch.tensor, pair), dim=0)
for pair in hf_embeddings
]
with vllm_runner(emb_model_name,
runner="pooling",
dtype=DTYPE,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)