mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 20:15:01 +08:00
188 lines
5.6 KiB
Python
188 lines
5.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
CROSS_ENCODER_MODELS = [
|
|
"cross-encoder/ms-marco-MiniLM-L-6-v2", # Bert
|
|
"BAAI/bge-reranker-v2-m3", # Roberta
|
|
]
|
|
|
|
EMBEDDING_MODELS = [
|
|
"sentence-transformers/all-MiniLM-L12-v2",
|
|
]
|
|
|
|
TEXTS_1 = [
|
|
"What is the capital of France?",
|
|
"What is the capital of Germany?",
|
|
]
|
|
|
|
TEXTS_2 = [
|
|
"The capital of France is Paris.",
|
|
"The capital of Germany is Berlin.",
|
|
]
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def v1(run_with_both_engines):
|
|
# Simple autouse wrapper to run both engines for each test
|
|
# This can be promoted up to conftest.py to run for every
|
|
# test in a package
|
|
pass
|
|
|
|
|
|
DTYPE = "half"
|
|
|
|
|
|
@pytest.fixture(scope="module", params=CROSS_ENCODER_MODELS)
|
|
def model_name(request):
|
|
yield request.param
|
|
|
|
|
|
def test_cross_encoder_1_to_1(vllm_runner, hf_runner, model_name):
|
|
text_pair = [TEXTS_1[0], TEXTS_2[0]]
|
|
|
|
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
|
|
hf_outputs = hf_model.predict([text_pair]).tolist()
|
|
|
|
with vllm_runner(model_name,
|
|
runner="pooling",
|
|
dtype=DTYPE,
|
|
max_model_len=None) as vllm_model:
|
|
vllm_outputs = vllm_model.score(text_pair[0], text_pair[1])
|
|
|
|
assert len(vllm_outputs) == 1
|
|
assert len(hf_outputs) == 1
|
|
|
|
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
|
|
|
|
|
|
def test_cross_encoder_1_to_N(vllm_runner, hf_runner, model_name):
|
|
text_pairs = [
|
|
[TEXTS_1[0], TEXTS_2[0]],
|
|
[TEXTS_1[0], TEXTS_2[1]],
|
|
]
|
|
|
|
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
|
|
hf_outputs = hf_model.predict(text_pairs).tolist()
|
|
|
|
with vllm_runner(model_name,
|
|
runner="pooling",
|
|
dtype=DTYPE,
|
|
max_model_len=None) as vllm_model:
|
|
vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2)
|
|
|
|
assert len(vllm_outputs) == 2
|
|
assert len(hf_outputs) == 2
|
|
|
|
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
|
|
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)
|
|
|
|
|
|
def test_cross_encoder_N_to_N(vllm_runner, hf_runner, model_name):
|
|
text_pairs = [
|
|
[TEXTS_1[0], TEXTS_2[0]],
|
|
[TEXTS_1[1], TEXTS_2[1]],
|
|
]
|
|
|
|
with hf_runner(model_name, dtype=DTYPE, is_cross_encoder=True) as hf_model:
|
|
hf_outputs = hf_model.predict(text_pairs).tolist()
|
|
|
|
with vllm_runner(model_name,
|
|
runner="pooling",
|
|
dtype=DTYPE,
|
|
max_model_len=None) as vllm_model:
|
|
vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2)
|
|
|
|
assert len(vllm_outputs) == 2
|
|
assert len(hf_outputs) == 2
|
|
|
|
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
|
|
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)
|
|
|
|
|
|
@pytest.fixture(scope="module", params=EMBEDDING_MODELS)
|
|
def emb_model_name(request):
|
|
yield request.param
|
|
|
|
|
|
def test_embedding_1_to_1(vllm_runner, hf_runner, emb_model_name):
|
|
text_pair = [TEXTS_1[0], TEXTS_2[0]]
|
|
|
|
with hf_runner(emb_model_name, dtype=DTYPE,
|
|
is_sentence_transformer=True) as hf_model:
|
|
hf_embeddings = hf_model.encode(text_pair)
|
|
hf_outputs = [
|
|
F.cosine_similarity(*map(torch.tensor, hf_embeddings), dim=0)
|
|
]
|
|
|
|
with vllm_runner(emb_model_name,
|
|
runner="pooling",
|
|
dtype=DTYPE,
|
|
max_model_len=None) as vllm_model:
|
|
vllm_outputs = vllm_model.score(text_pair[0], text_pair[1])
|
|
|
|
assert len(vllm_outputs) == 1
|
|
assert len(hf_outputs) == 1
|
|
|
|
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
|
|
|
|
|
|
def test_embedding_1_to_N(vllm_runner, hf_runner, emb_model_name):
|
|
text_pairs = [
|
|
[TEXTS_1[0], TEXTS_2[0]],
|
|
[TEXTS_1[0], TEXTS_2[1]],
|
|
]
|
|
|
|
with hf_runner(emb_model_name, dtype=DTYPE,
|
|
is_sentence_transformer=True) as hf_model:
|
|
hf_embeddings = [
|
|
hf_model.encode(text_pair) for text_pair in text_pairs
|
|
]
|
|
hf_outputs = [
|
|
F.cosine_similarity(*map(torch.tensor, pair), dim=0)
|
|
for pair in hf_embeddings
|
|
]
|
|
|
|
with vllm_runner(emb_model_name,
|
|
runner="pooling",
|
|
dtype=DTYPE,
|
|
max_model_len=None) as vllm_model:
|
|
vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2)
|
|
|
|
assert len(vllm_outputs) == 2
|
|
assert len(hf_outputs) == 2
|
|
|
|
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
|
|
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)
|
|
|
|
|
|
def test_embedding_N_to_N(vllm_runner, hf_runner, emb_model_name):
|
|
text_pairs = [
|
|
[TEXTS_1[0], TEXTS_2[0]],
|
|
[TEXTS_1[1], TEXTS_2[1]],
|
|
]
|
|
|
|
with hf_runner(emb_model_name, dtype=DTYPE,
|
|
is_sentence_transformer=True) as hf_model:
|
|
hf_embeddings = [
|
|
hf_model.encode(text_pair) for text_pair in text_pairs
|
|
]
|
|
hf_outputs = [
|
|
F.cosine_similarity(*map(torch.tensor, pair), dim=0)
|
|
for pair in hf_embeddings
|
|
]
|
|
|
|
with vllm_runner(emb_model_name,
|
|
runner="pooling",
|
|
dtype=DTYPE,
|
|
max_model_len=None) as vllm_model:
|
|
vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2)
|
|
|
|
assert len(vllm_outputs) == 2
|
|
assert len(hf_outputs) == 2
|
|
|
|
assert hf_outputs[0] == pytest.approx(vllm_outputs[0], rel=0.01)
|
|
assert hf_outputs[1] == pytest.approx(vllm_outputs[1], rel=0.01)
|