Michael Goin 3b17ea26e4
[TPU] Re-enable the Pallas MoE kernel (#18025)
Signed-off-by: Michael Goin <mgoin64@gmail.com>
2025-05-20 19:52:27 -07:00

84 lines
3.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import torch
import torch.nn.functional as F
def _histogram(input: torch.Tensor, min: int, max: int) -> torch.Tensor:
"""
Compute the histogram of a int32 tensor. The bin edges are defined by the
min and max values, with step = 1.
"""
assert input.dtype == torch.int32, "input must be of torch.int32 dtype."
assert min <= max, "min must be less than or equal to max."
def searchsorted(sorted_sequence: torch.Tensor,
values_to_search: torch.Tensor) -> torch.Tensor:
return (sorted_sequence.unsqueeze(1) == values_to_search).sum(dim=1)
bin_edges = torch.linspace(min, max, max - min + 1,
dtype=input.dtype).to(input.device)
return searchsorted(bin_edges, input).to(torch.int32)
def fused_moe(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
global_num_experts: int,
expert_map: torch.Tensor = None,
renormalize: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states: [*, hidden_size]
w1: [num_experts, intermediate_size * 2, hidden_size]
w2: [num_experts, hidden_size, intermediate_size]
gating_output: [*, num_experts]
"""
assert expert_map is None, "expert_map is not supported for pallas MoE."
orig_shape = hidden_states.shape
hidden_size = hidden_states.shape[-1]
num_tokens = hidden_states.shape[:-1].numel()
num_experts = w1.shape[0]
intermediate_size = w2.shape[-1]
device = hidden_states.device
dtype = hidden_states.dtype
assert (num_tokens * topk) % 16 == 0, (
"The Pallas GMM kernel requires num_tokens * topk to be a multiple of "
f"16 but got {num_tokens * topk}")
hidden_states = hidden_states.view(num_tokens, hidden_size)
gating_output = gating_output.view(num_tokens, num_experts)
topk_weights = gating_output.softmax(dim=-1, dtype=torch.float)
topk_weights, topk_indices = topk_weights.topk(topk, dim=-1)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
topk_weights = topk_weights.to(dtype)
topk_indices = topk_indices.flatten()
topk_argsort_indices = topk_indices.argsort()
topk_argsort_revert_indices = topk_argsort_indices.argsort()
token_indices = torch.arange(num_tokens,
device=device).repeat_interleave(topk)
token_indices = token_indices[topk_argsort_indices]
group_sizes = _histogram(topk_indices.to(torch.int32), 0, num_experts - 1)
# NOTE(woosuk): The GMM Pallas kernel requires a different weight layout
# from HF Transformers.
w1 = w1.transpose(1, 2)
w2 = w2.transpose(1, 2)
x = hidden_states[token_indices]
x = torch.ops.xla.gmm(x, w1, group_sizes)
x = F.silu(x[..., :intermediate_size]) * x[..., intermediate_size:]
x = torch.ops.xla.gmm(x, w2, group_sizes)
x = x[topk_argsort_revert_indices].reshape(-1, topk, hidden_size)
x = x * topk_weights.unsqueeze(dim=-1)
x = x.sum(dim=-2)
x = x.reshape(orig_shape)
return x