vllm/vllm/model_executor/models/intern_vit.py
Isotr0py 3c713a9711
[Model] Cleanup InternViT's data parallel implementation (#25306)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-20 05:46:24 -07:00

441 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# adapted from https://huggingface.co/OpenGVLab/InternVL2-4B/blob/main/modeling_intern_vit.py
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from collections.abc import Iterable
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig
from vllm.attention.layer import MultiHeadAttention
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
split_tensor_along_last_dim,
tensor_model_parallel_all_gather)
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.multimodal.utils import run_dp_sharded_vision_model
NORM2FN = {
'rms_norm': RMSNorm,
'layer_norm': nn.LayerNorm,
}
class InternVisionEmbeddings(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.patch_embedding = nn.Conv2d(in_channels=3,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size)
self.num_patches = (self.image_size // self.patch_size)**2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(
torch.randn(1, self.num_positions, self.embed_dim))
def _get_pos_embed(self, pos_embed: torch.Tensor, H: int, W: int):
target_dtype = pos_embed.dtype
pos_embed = pos_embed.float().reshape(
1, self.image_size // self.patch_size,
self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
pos_embed = F.interpolate(pos_embed,
size=(H, W),
mode='bicubic',
align_corners=False)
return pos_embed.reshape(1, -1, H * W).permute(0, 2,
1).to(target_dtype)
def _get_position_embedding(self, H: int, W: int) -> torch.Tensor:
position_embedding = self.position_embedding
if self.num_patches == H * W:
return position_embedding
return torch.cat(
[
position_embedding[:, :1, :],
self._get_pos_embed(position_embedding[:, 1:, :], H, W),
],
dim=1,
)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(
target_dtype)) # shape = [*, channel, width, height]
batch_size, _, height, width = patch_embeds.shape
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1,
-1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
position_embedding = self._get_position_embedding(height, width)
embeddings = embeddings + position_embedding.to(target_dtype)
return embeddings
class InternVisionPatchModel(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
self.embeddings = InternVisionEmbeddings(config)
def get_input_embeddings(self):
return self.embeddings
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
pixel_embeds: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
if pixel_values is None and pixel_embeds is None:
raise ValueError(
'You have to specify pixel_values or pixel_embeds')
if pixel_embeds is not None:
hidden_states = pixel_embeds
elif pixel_values is not None:
if pixel_values.ndim == 4:
hidden_states = self.embeddings(pixel_values)
else:
raise ValueError(
f'wrong pixel_values size: {pixel_values.shape}')
return hidden_states
class InternParallelAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_dummy_heads: int = 0,
prefix: str = "",
use_data_parallel: bool = False,
) -> None:
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f'embed_dim must be divisible by num_heads '
f'(got `embed_dim`: {self.embed_dim} and `num_heads`:'
f' {self.num_heads}).')
self.tp_size = (1 if use_data_parallel else
get_tensor_model_parallel_world_size())
self.tp_rank = (0 if use_data_parallel else
get_tensor_model_parallel_rank())
# Additional dummy heads are used to enable TP for common GPU counts.
self.dummy_dim = (num_dummy_heads + self.num_heads) * self.head_dim
self.num_heads_per_partition = divide(num_dummy_heads + self.num_heads,
self.tp_size)
self.scale = self.head_dim**-0.5
self.qkv = QKVParallelLinear(
self.embed_dim,
self.head_dim,
num_dummy_heads + self.num_heads,
bias=config.qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv",
disable_tp=use_data_parallel,
)
self.qk_normalization = config.qk_normalization
if self.qk_normalization:
self.q_norm = RMSNorm(self.dummy_dim,
eps=config.layer_norm_eps,
var_hidden_size=self.embed_dim)
self.k_norm = RMSNorm(self.dummy_dim,
eps=config.layer_norm_eps,
var_hidden_size=self.embed_dim)
self.proj = RowParallelLinear(
self.dummy_dim,
self.embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.proj",
disable_tp=use_data_parallel,
)
self.attn = MultiHeadAttention(self.num_heads_per_partition,
self.head_dim, self.scale)
def _apply_qk_norm(self, q: torch.Tensor, k: torch.Tensor):
if self.tp_size > 1:
q = tensor_model_parallel_all_gather(q.contiguous())
k = tensor_model_parallel_all_gather(k.contiguous())
q = self.q_norm(q)
k = self.k_norm(k)
if self.tp_size > 1:
splitter = partial(split_tensor_along_last_dim,
num_partitions=self.tp_size)
q = splitter(q)[self.tp_rank]
k = splitter(k)[self.tp_rank]
return q, k
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, _ = x.shape
qkv, _ = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
if self.qk_normalization:
q, k = self._apply_qk_norm(q, k)
out = self.attn(q, k, v)
out, _ = self.proj(out)
return out
class InternMLP(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
use_data_parallel: bool = False,
) -> None:
super().__init__()
self.config = config
self.activation_fn = get_act_fn(config.hidden_act)
self.fc1 = ColumnParallelLinear(config.hidden_size,
config.intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
disable_tp=use_data_parallel)
self.fc2 = RowParallelLinear(config.intermediate_size,
config.hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
disable_tp=use_data_parallel)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class InternVisionEncoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_dummy_heads: int = 0,
prefix: str = "",
use_data_parallel: bool = False,
) -> None:
super().__init__()
self.embed_dim = config.hidden_size
self.intermediate_size = config.intermediate_size
self.norm_type = config.norm_type
self.attn = self._init_attn(config,
quant_config,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.attn",
use_data_parallel=use_data_parallel)
self.mlp = InternMLP(config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
use_data_parallel=use_data_parallel)
self.norm1 = NORM2FN[self.norm_type](self.embed_dim,
eps=config.layer_norm_eps)
self.norm2 = NORM2FN[self.norm_type](self.embed_dim,
eps=config.layer_norm_eps)
self.ls1 = nn.Parameter(config.initializer_factor *
torch.ones(self.embed_dim))
self.ls2 = nn.Parameter(config.initializer_factor *
torch.ones(self.embed_dim))
def _init_attn(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
*,
num_dummy_heads: int,
prefix: str = "",
use_data_parallel: bool = False,
):
# fallback to sdpa attention if tp unavailable
tp_size = (1 if use_data_parallel else
get_tensor_model_parallel_world_size())
num_heads = config.num_attention_heads
# if the number of heads is not divisible by tp_size,
# we also disable Attention's TP
use_data_parallel = (use_data_parallel
or (num_heads + num_dummy_heads) % tp_size != 0)
return InternParallelAttention(config,
quant_config=quant_config,
num_dummy_heads=num_dummy_heads,
prefix=prefix,
use_data_parallel=use_data_parallel)
def forward(
self,
hidden_states: torch.Tensor,
):
hidden_states = hidden_states + self.attn(
self.norm1(hidden_states)) * self.ls1
hidden_states = hidden_states + self.mlp(
self.norm2(hidden_states)) * self.ls2
return hidden_states
class InternVisionEncoder(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
num_dummy_heads: int = 0,
prefix: str = "",
use_data_parallel: bool = False,
):
super().__init__()
self.config = config
if num_hidden_layers_override is None:
num_hidden_layers = config.num_hidden_layers
else:
num_hidden_layers = num_hidden_layers_override
self.layers = nn.ModuleList([
InternVisionEncoderLayer(config,
quant_config,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.layers.{layer_idx}",
use_data_parallel=use_data_parallel)
for layer_idx in range(num_hidden_layers)
])
def forward(self, inputs_embeds: torch.Tensor):
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states = encoder_layer(hidden_states)
return hidden_states
class InternVisionModel(nn.Module):
packed_modules_mapping = {
"qkv": ["qkv"],
}
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
num_dummy_heads: int = 0,
prefix: str = "",
use_data_parallel: bool = False,
) -> None:
super().__init__()
self.config = config
self.use_data_parallel = use_data_parallel
self.embeddings = InternVisionEmbeddings(config)
self.encoder = InternVisionEncoder(
config=config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.encoder",
use_data_parallel=use_data_parallel,
)
def get_input_embeddings(self):
return self.embeddings
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
pixel_embeds: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
if pixel_values is None and pixel_embeds is None:
raise ValueError(
'You have to specify pixel_values or pixel_embeds')
if pixel_embeds is not None:
hidden_states = pixel_embeds
elif pixel_values is not None:
if pixel_values.ndim == 4:
hidden_states = self.embeddings(pixel_values)
else:
raise ValueError(
f'wrong pixel_values size: {pixel_values.shape}')
if self.use_data_parallel:
encoder_outputs = run_dp_sharded_vision_model(
hidden_states, self.encoder)
else:
encoder_outputs = self.encoder(inputs_embeds=hidden_states)
return encoder_outputs
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params