mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-24 22:25:01 +08:00
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn> Signed-off-by: Isotr0py <2037008807@qq.com>
364 lines
14 KiB
Python
364 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||
|
||
# yapf: disable
|
||
# ruff: noqa: E501
|
||
# coding=utf-8
|
||
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/ff23960c5cf9e6874b44be38af930cfb0ccbb620/deepseek_vl2/models/processing_deepseek_vl_v2.py
|
||
# Copyright (c) 2023-2024 DeepSeek.
|
||
#
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||
# this software and associated documentation files (the "Software"), to deal in
|
||
# the Software without restriction, including without limitation the rights to
|
||
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||
# the Software, and to permit persons to whom the Software is furnished to do so,
|
||
# subject to the following conditions:
|
||
#
|
||
# The above copyright notice and this permission notice shall be included in all
|
||
# copies or substantial portions of the Software.
|
||
#
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
import math
|
||
|
||
import torch
|
||
import torchvision.transforms as T
|
||
from PIL import Image, ImageOps
|
||
from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast
|
||
from transformers.processing_utils import ProcessorMixin
|
||
|
||
|
||
class ImageTransform:
|
||
|
||
def __init__(self,
|
||
mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
std: tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
normalize: bool = True):
|
||
self.mean = mean
|
||
self.std = std
|
||
self.normalize = normalize
|
||
|
||
transform_pipelines = [T.ToTensor()]
|
||
|
||
if normalize:
|
||
transform_pipelines.append(T.Normalize(mean, std))
|
||
|
||
self.transform = T.Compose(transform_pipelines)
|
||
|
||
def __call__(self, pil_img: Image.Image):
|
||
x = self.transform(pil_img)
|
||
return x
|
||
|
||
|
||
class DeepseekVLV2Processor(ProcessorMixin):
|
||
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
||
attributes = ["tokenizer"]
|
||
|
||
def __init__(
|
||
self,
|
||
tokenizer: LlamaTokenizerFast,
|
||
candidate_resolutions: tuple[tuple[int, int]],
|
||
patch_size: int,
|
||
downsample_ratio: int,
|
||
image_mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
image_std: tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
normalize: bool = True,
|
||
image_token: str = "<image>",
|
||
pad_token: str = "<|▁pad▁|>",
|
||
add_special_token: bool = False,
|
||
sft_format: str = "deepseek",
|
||
mask_prompt: bool = True,
|
||
ignore_id: int = -100,
|
||
**kwargs,
|
||
):
|
||
|
||
self.candidate_resolutions = candidate_resolutions
|
||
self.image_size = candidate_resolutions[0][0]
|
||
self.patch_size = patch_size
|
||
self.image_mean = image_mean
|
||
self.image_std = image_std
|
||
self.normalize = normalize
|
||
self.downsample_ratio = downsample_ratio
|
||
|
||
self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize)
|
||
self.tokenizer = tokenizer
|
||
self.tokenizer.padding_side = 'left' # must set this,padding side with make a difference in batch inference
|
||
|
||
# add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
|
||
if tokenizer.pad_token is None:
|
||
self.tokenizer.add_special_tokens({'pad_token': pad_token})
|
||
|
||
# add image token
|
||
image_token_id = self.tokenizer.vocab.get(image_token)
|
||
if image_token_id is None:
|
||
special_tokens = [image_token]
|
||
special_tokens_dict = {"additional_special_tokens": special_tokens}
|
||
self.tokenizer.add_special_tokens(special_tokens_dict)
|
||
self.image_token_id = self.tokenizer.vocab.get(image_token)
|
||
|
||
# add five special tokens for grounding-related tasks
|
||
# <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|>
|
||
special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>']
|
||
special_tokens_dict = {"additional_special_tokens": special_tokens}
|
||
self.tokenizer.add_special_tokens(special_tokens_dict)
|
||
|
||
# add special tokens for SFT data
|
||
special_tokens = ["<|User|>", "<|Assistant|>"]
|
||
special_tokens_dict = {"additional_special_tokens": special_tokens}
|
||
self.tokenizer.add_special_tokens(special_tokens_dict)
|
||
|
||
self.image_token = image_token
|
||
self.pad_token = pad_token
|
||
self.add_special_token = add_special_token
|
||
self.sft_format = sft_format
|
||
self.mask_prompt = mask_prompt
|
||
self.ignore_id = ignore_id
|
||
|
||
super().__init__(
|
||
tokenizer,
|
||
**kwargs,
|
||
)
|
||
|
||
def select_best_resolution(self, image_size):
|
||
# used for cropping
|
||
original_width, original_height = image_size
|
||
best_fit = None
|
||
max_effective_resolution = 0
|
||
min_wasted_resolution = float("inf")
|
||
|
||
for width, height in self.candidate_resolutions:
|
||
scale = min(width / original_width, height / original_height)
|
||
downscaled_width, downscaled_height = int(
|
||
original_width * scale), int(original_height * scale)
|
||
effective_resolution = min(downscaled_width * downscaled_height,
|
||
original_width * original_height)
|
||
wasted_resolution = (width * height) - effective_resolution
|
||
|
||
if effective_resolution > max_effective_resolution or (
|
||
effective_resolution == max_effective_resolution
|
||
and wasted_resolution < min_wasted_resolution):
|
||
max_effective_resolution = effective_resolution
|
||
min_wasted_resolution = wasted_resolution
|
||
best_fit = (width, height)
|
||
|
||
return best_fit
|
||
|
||
@property
|
||
def bos_id(self):
|
||
return self.tokenizer.bos_token_id
|
||
|
||
@property
|
||
def eos_id(self):
|
||
return self.tokenizer.eos_token_id
|
||
|
||
@property
|
||
def pad_id(self):
|
||
return self.tokenizer.pad_token_id
|
||
|
||
def encode(self, text: str, bos: bool = True, eos: bool = False):
|
||
t = self.tokenizer.encode(text, add_special_tokens=False)
|
||
|
||
if bos:
|
||
t = [self.bos_id] + t
|
||
if eos:
|
||
t = t + [self.eos_id]
|
||
|
||
return t
|
||
|
||
def decode(self, t: list[int], **kwargs) -> str:
|
||
return self.tokenizer.decode(t, **kwargs)
|
||
|
||
def process_one(
|
||
self,
|
||
prompt: str,
|
||
images: list[Image.Image],
|
||
inference_mode: bool = True,
|
||
**kwargs,
|
||
):
|
||
"""
|
||
|
||
Args:
|
||
prompt (str): the formatted prompt;
|
||
conversations (list[dict]): conversations with a list of messages;
|
||
images (list[ImageType]): the list of images;
|
||
inference_mode (bool): if True, then remove the last eos token;
|
||
system_prompt (str): the system prompt;
|
||
**kwargs:
|
||
|
||
Returns:
|
||
outputs (BaseProcessorOutput): the output of the processor,
|
||
- input_ids (torch.LongTensor): [N + image tokens]
|
||
- target_ids (torch.LongTensor): [N + image tokens]
|
||
- pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
|
||
- image_id (int): the id of the image token
|
||
- num_image_tokens (list[int]): the number of image tokens
|
||
"""
|
||
|
||
assert (prompt is not None and images is not None
|
||
), "prompt and images must be used at the same time."
|
||
|
||
sft_format = prompt
|
||
tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.tokenize_with_images(
|
||
sft_format, images, bos=True, eos=True, cropping=len(images) <= 2)
|
||
masked_tokenized_str = []
|
||
for token_index in tokenized_str:
|
||
if token_index != self.image_token_id:
|
||
masked_tokenized_str.append(token_index)
|
||
else:
|
||
masked_tokenized_str.append(self.ignore_id)
|
||
|
||
assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \
|
||
(f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
|
||
f"imags_seq_mask's length {len(images_seq_mask)}, are not equal")
|
||
|
||
input_ids = torch.LongTensor(tokenized_str)
|
||
target_ids = torch.LongTensor(masked_tokenized_str)
|
||
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
|
||
|
||
# set input_ids < 0 | input_ids == self.image_token_id as ignore_id
|
||
target_ids[(input_ids < 0) |
|
||
(input_ids == self.image_token_id)] = self.ignore_id
|
||
input_ids[input_ids < 0] = self.pad_id
|
||
|
||
if inference_mode:
|
||
# Remove the ending eos token
|
||
assert input_ids[-1] == self.eos_id
|
||
input_ids = input_ids[:-1]
|
||
target_ids = target_ids[:-1]
|
||
images_seq_mask = images_seq_mask[:-1]
|
||
|
||
if len(images_list) == 0:
|
||
pixel_values = torch.zeros((1, 3, self.image_size, self.image_size))
|
||
images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
|
||
else:
|
||
pixel_values = torch.stack(images_list, dim=0)
|
||
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
|
||
|
||
input_ids = input_ids.unsqueeze(0)
|
||
|
||
prepare = BatchFeature(
|
||
data=dict(
|
||
input_ids=input_ids,
|
||
pixel_values=pixel_values,
|
||
images_seq_mask=images_seq_mask,
|
||
images_spatial_crop=images_spatial_crop,
|
||
num_image_tokens=num_image_tokens,
|
||
),
|
||
tensor_type="pt",
|
||
)
|
||
return prepare
|
||
|
||
def __call__(
|
||
self,
|
||
*,
|
||
text: str,
|
||
images: list[Image.Image],
|
||
inference_mode: bool = True,
|
||
**kwargs,
|
||
):
|
||
"""
|
||
|
||
Args:
|
||
text (str): the formatted prompt;
|
||
images (list[ImageType]): the list of images;
|
||
inference_mode (bool): if True, then remove the last eos token;
|
||
**kwargs:
|
||
|
||
Returns:
|
||
outputs (BaseProcessorOutput): the output of the processor,
|
||
- input_ids (torch.LongTensor): [N + image tokens]
|
||
- images (torch.FloatTensor): [n_images, 3, H, W]
|
||
- image_id (int): the id of the image token
|
||
- num_image_tokens (list[int]): the number of image tokens
|
||
"""
|
||
|
||
prepare = self.process_one(
|
||
prompt=text,
|
||
images=images,
|
||
inference_mode=inference_mode,
|
||
)
|
||
|
||
return prepare
|
||
|
||
def tokenize_with_images(
|
||
self,
|
||
conversation: str,
|
||
images: list[Image.Image],
|
||
bos: bool = True,
|
||
eos: bool = True,
|
||
cropping: bool = True,
|
||
):
|
||
"""Tokenize text with <image> tags."""
|
||
assert conversation.count(self.image_token) == len(images)
|
||
text_splits = conversation.split(self.image_token)
|
||
images_list, images_seq_mask, images_spatial_crop = [], [], []
|
||
num_image_tokens = []
|
||
tokenized_str = []
|
||
for text_sep, image in zip(text_splits, images):
|
||
"""encode text_sep"""
|
||
tokenized_sep = self.encode(text_sep, bos=False, eos=False)
|
||
tokenized_str += tokenized_sep
|
||
images_seq_mask += [False] * len(tokenized_sep)
|
||
|
||
"""select best resolution for anyres"""
|
||
if cropping:
|
||
best_width, best_height = self.select_best_resolution(image.size)
|
||
else:
|
||
best_width, best_height = self.image_size, self.image_size
|
||
|
||
"""process the global view"""
|
||
global_view = ImageOps.pad(image, (self.image_size, self.image_size),
|
||
color=tuple(int(x * 255) for x in self.image_transform.mean))
|
||
images_list.append(self.image_transform(global_view))
|
||
|
||
"""process the local views"""
|
||
local_view = ImageOps.pad(image, (best_width, best_height),
|
||
color=tuple(int(x * 255) for x in self.image_transform.mean))
|
||
for i in range(0, best_height, self.image_size):
|
||
for j in range(0, best_width, self.image_size):
|
||
images_list.append(
|
||
self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))
|
||
|
||
"""record height / width crop num"""
|
||
num_width_tiles, num_height_tiles = best_width // self.image_size, best_height // self.image_size
|
||
images_spatial_crop.append([num_width_tiles, num_height_tiles])
|
||
|
||
"""add image tokens"""
|
||
h = w = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio)
|
||
# global views tokens h * (w + 1), 1 is for line separator
|
||
tokenized_image = [self.image_token_id] * h * (w + 1)
|
||
# add a separator between global and local views
|
||
tokenized_image += [self.image_token_id]
|
||
# local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
|
||
tokenized_image += [self.image_token_id] * (num_height_tiles * h) * (num_width_tiles * w + 1)
|
||
|
||
tokenized_str += tokenized_image
|
||
images_seq_mask += [True] * len(tokenized_image)
|
||
num_image_tokens.append(len(tokenized_image))
|
||
|
||
"""process the last text split"""
|
||
tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
|
||
tokenized_str += tokenized_sep
|
||
images_seq_mask += [False] * len(tokenized_sep)
|
||
|
||
"""add the bos and eos tokens"""
|
||
if bos:
|
||
tokenized_str = [self.bos_id] + tokenized_str
|
||
images_seq_mask = [False] + images_seq_mask
|
||
if eos:
|
||
tokenized_str = tokenized_str + [self.eos_id]
|
||
images_seq_mask = images_seq_mask + [False]
|
||
|
||
assert len(tokenized_str) == len(
|
||
images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
|
||
|
||
return tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens
|
||
|
||
|
||
AutoProcessor.register("DeepseekVLV2Processor", DeepseekVLV2Processor)
|