vllm/vllm/attention/backends/rocm_flash_attn.py
Michael Goin 4082338a25
Remove unneeded ROCm platform import when using CUDA (#22765)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-08-12 21:26:38 -07:00

1015 lines
43 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer ROCm GPUs."""
import itertools
from dataclasses import dataclass
from functools import cache
from typing import TYPE_CHECKING, List, Optional, Tuple, Type
import torch
import vllm.envs as envs
from vllm import _custom_ops as ops
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionLayer,
AttentionMetadata, AttentionType)
from vllm.attention.backends.utils import (CommonAttentionState,
CommonMetadataBuilder)
from vllm.attention.ops.paged_attn import (PagedAttention,
PagedAttentionMetadata)
from vllm.config import get_current_vllm_config
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape)
from vllm.platforms import current_platform
if TYPE_CHECKING:
from vllm.worker.model_runner import ModelInputForGPUWithSamplingMetadata
logger = init_logger(__name__)
_PARTITION_SIZE_ROCM = 256
@cache
def is_rocm_aiter_paged_attn_enabled() -> bool:
return envs.VLLM_ROCM_USE_AITER_PAGED_ATTN \
and envs.VLLM_ROCM_USE_AITER \
@cache
def _get_paged_attn_module() -> PagedAttention:
"""
Initializes the appropriate PagedAttention module from `attention/ops`,
which is used as helper function
by `ROCmFlashAttentionImpl` and `ROCmFlashAttentionBackend`.
The choice of attention module depends on whether
AITER paged attention is enabled:
- If enabled, `ROCmFlashAttentionImpl` uses `AITERPagedAttention`.
- Otherwise, it defaults to using the original `PagedAttention`.
"""
if is_rocm_aiter_paged_attn_enabled():
# Import AITERPagedAttention only when the flag is enabled
from vllm.attention.ops.rocm_aiter_paged_attn import (
AITERPagedAttention)
return AITERPagedAttention()
return PagedAttention()
class ROCmFlashAttentionBackend(AttentionBackend):
accept_output_buffer: bool = True
@staticmethod
def get_name() -> str:
return "ROCM_FLASH"
@staticmethod
def get_impl_cls() -> Type["ROCmFlashAttentionImpl"]:
return ROCmFlashAttentionImpl
@staticmethod
def get_metadata_cls() -> Type["AttentionMetadata"]:
return ROCmFlashAttentionMetadata
@staticmethod
def get_builder_cls() -> Type["ROCmFlashAttentionMetadataBuilder"]:
return ROCmFlashAttentionMetadataBuilder
@staticmethod
def get_state_cls() -> Type["CommonAttentionState"]:
return CommonAttentionState
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
paged_attn = _get_paged_attn_module()
return paged_attn.get_kv_cache_shape(num_blocks, block_size,
num_kv_heads, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
paged_attn = _get_paged_attn_module()
paged_attn.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
paged_attn = _get_paged_attn_module()
paged_attn.copy_blocks(kv_caches, src_to_dists)
@dataclass
class ROCmFlashAttentionMetadata(AttentionMetadata, PagedAttentionMetadata):
"""Metadata for FlashAttentionBackend.
NOTE: Any python object stored here is not updated when it is
cuda-graph replayed. If you have values that need to be changed
dynamically, it should be stored in tensor. The tensor has to be
updated from `CUDAGraphRunner.forward` API.
"""
# (batch_size,). The sequence length per sequence. Sequence length means
# the computed tokens + new tokens None if it is a decoding.
seq_lens: Optional[List[int]]
# seq_lens stored as a tensor.
seq_lens_tensor: Optional[torch.Tensor]
# Maximum sequence length among prefill batch. 0 if there are decoding
# requests only.
max_prefill_seq_len: int
# Maximum sequence length among decode batch. 0 if there are prefill
# requests only.
max_decode_seq_len: int
# Whether or not if cuda graph is enabled.
# Cuda-graph is currently enabled for decoding only.
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
use_cuda_graph: bool
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ----------------------|
# |-- query_len ---|
# Maximum query length in the batch. None for decoding.
max_query_len: Optional[int] = None
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
# the batch, used to index into subquery. E.g., if the subquery length
# is [4, 6], it is [0, 4, 10].
query_start_loc: Optional[torch.Tensor] = None
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
# the batch, used to index into sequence. E.g., if the sequence length is
# [4, 6], it is [0, 4, 10].
seq_start_loc: Optional[torch.Tensor] = None
# (batch_size,) A tensor of context lengths (tokens that are computed
# so far).
context_lens_tensor: Optional[torch.Tensor] = None
# Max number of query tokens among request in the batch.
max_decode_query_len: Optional[int] = None
_cached_prefill_metadata: Optional["ROCmFlashAttentionMetadata"] = None
_cached_decode_metadata: Optional["ROCmFlashAttentionMetadata"] = None
# Begin encoder attn & enc/dec cross-attn fields...
# Encoder sequence lengths representation
encoder_seq_lens: Optional[List[int]] = None
encoder_seq_lens_tensor: Optional[torch.Tensor] = None
# Maximum sequence length among encoder sequences
max_encoder_seq_len: Optional[int] = None
# Number of tokens input to encoder
num_encoder_tokens: Optional[int] = None
# Cross-attention memory-mapping data structures: slot mapping
# and block tables
cross_slot_mapping: Optional[torch.Tensor] = None
cross_block_tables: Optional[torch.Tensor] = None
@property
def prefill_metadata(self) -> Optional["ROCmFlashAttentionMetadata"]:
if self.num_prefills == 0:
return None
if self._cached_prefill_metadata is not None:
return self._cached_prefill_metadata
assert self.seq_lens is not None
assert self.seq_lens_tensor is not None
assert self.block_tables is not None
self._cached_prefill_metadata = ROCmFlashAttentionMetadata(
num_prefills=self.num_prefills,
num_prefill_tokens=self.num_prefill_tokens,
num_decode_tokens=0,
slot_mapping=self.slot_mapping[:self.num_prefill_tokens],
multi_modal_placeholder_index_maps=self.
multi_modal_placeholder_index_maps,
enable_kv_scales_calculation=self.enable_kv_scales_calculation,
seq_lens=self.seq_lens[:self.num_prefills],
seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills],
max_query_len=self.max_query_len,
max_prefill_seq_len=self.max_prefill_seq_len,
max_decode_seq_len=0,
query_start_loc=None if self.query_start_loc is None else
self.query_start_loc[:self.num_prefills + 1],
seq_start_loc=None if self.seq_start_loc is None else
self.seq_start_loc[:self.num_prefills + 1],
context_lens_tensor=None if self.context_lens_tensor is None else
self.context_lens_tensor[:self.num_prefills],
block_tables=self.block_tables[:self.num_prefills],
use_cuda_graph=False,
# Begin encoder & cross attn fields below...
encoder_seq_lens=self.encoder_seq_lens,
encoder_seq_lens_tensor=self.encoder_seq_lens_tensor,
max_encoder_seq_len=self.max_encoder_seq_len,
cross_slot_mapping=self.cross_slot_mapping,
cross_block_tables=self.cross_block_tables)
return self._cached_prefill_metadata
@property
def decode_metadata(self) -> Optional["ROCmFlashAttentionMetadata"]:
if self.num_decode_tokens == 0:
return None
if self._cached_decode_metadata is not None:
return self._cached_decode_metadata
assert self.block_tables is not None
assert self.seq_lens_tensor is not None
self._cached_decode_metadata = ROCmFlashAttentionMetadata(
num_prefills=0,
num_prefill_tokens=0,
num_decode_tokens=self.num_decode_tokens,
slot_mapping=self.slot_mapping[self.num_prefill_tokens:],
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
seq_lens=None,
seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:],
max_query_len=None,
max_prefill_seq_len=0,
max_decode_seq_len=self.max_decode_seq_len,
query_start_loc=None,
seq_start_loc=None,
context_lens_tensor=None,
block_tables=self.block_tables[self.num_prefills:],
use_cuda_graph=self.use_cuda_graph,
# Begin encoder & cross attn fields below...
encoder_seq_lens=self.encoder_seq_lens,
encoder_seq_lens_tensor=self.encoder_seq_lens_tensor,
max_encoder_seq_len=self.max_encoder_seq_len,
cross_slot_mapping=self.cross_slot_mapping,
cross_block_tables=self.cross_block_tables)
# Batch may be composed of prefill|decodes, adjust query start indices
# to refer to the start of decodes when the two are split apart.
# E.g. in tokens:[3 prefills|6 decodes], query_start_loc=[3,9] => [0,6].
if self._cached_decode_metadata.query_start_loc is not None:
qs = self._cached_decode_metadata.query_start_loc
self._cached_decode_metadata.query_start_loc = qs - qs[0]
return self._cached_decode_metadata
def advance_step(self,
model_input: "ModelInputForGPUWithSamplingMetadata",
sampled_token_ids: Optional[torch.Tensor],
block_size: int,
num_seqs: int,
num_queries: int,
turn_prefills_into_decodes: bool = False):
"""
Update metadata in-place to advance one decode step.
"""
assert not turn_prefills_into_decodes, \
("Chunked prefill is not supported with rocm_flash_attn yet."
"turn_prefills_into_decodes is a Multi-Step + Chunked-Prefill "
"specific parameter.")
# When using cudagraph, the num_seqs is padded to the next captured
# batch sized, but num_queries tracks the actual number of requests in
# the batch. For --enforce-eager mode, num_seqs == num_queries
if num_seqs != num_queries:
assert num_seqs > num_queries
assert self.use_cuda_graph
assert self.num_prefills == 0
assert self.num_prefill_tokens == 0
assert self.num_decode_tokens == num_seqs
assert self.slot_mapping.shape == (num_seqs, )
assert self.seq_lens is not None
assert len(self.seq_lens) == num_seqs
assert self.seq_lens_tensor is not None
assert self.seq_lens_tensor.shape == (num_seqs, )
assert self.max_query_len == 1
assert self.max_prefill_seq_len == 0
assert self.max_decode_seq_len == max(self.seq_lens)
assert self.query_start_loc is not None
assert self.query_start_loc.shape == (num_queries + 1, )
assert self.seq_start_loc is not None
assert self.seq_start_loc.shape == (num_seqs + 1, )
assert self.context_lens_tensor is not None
assert self.context_lens_tensor.shape == (num_queries, )
assert self.block_tables is not None
assert self.block_tables.shape[0] == num_seqs
# Update query lengths. Note that we update only queries and not seqs,
# since tensors may be padded due to captured cuda graph batch size
for i in range(num_queries):
self.seq_lens[i] += 1
self.max_decode_seq_len = max(self.seq_lens)
ops.advance_step_flashattn(num_seqs=num_seqs,
num_queries=num_queries,
block_size=block_size,
input_tokens=model_input.input_tokens,
sampled_token_ids=sampled_token_ids,
input_positions=model_input.input_positions,
seq_lens=self.seq_lens_tensor,
slot_mapping=self.slot_mapping,
block_tables=self.block_tables)
class ROCmFlashAttentionMetadataBuilder(
CommonMetadataBuilder[ROCmFlashAttentionMetadata]):
_metadata_cls = ROCmFlashAttentionMetadata
def _make_alibi_bias(alibi_slopes: torch.Tensor,
dtype: torch.dtype,
seq_lens: Optional[List[int]],
make_attn_mask: bool = True) -> List[torch.Tensor]:
attn_biases = []
if seq_lens:
for seq_len in seq_lens:
bias = torch.arange(seq_len, dtype=dtype)
# NOTE(zhuohan): HF uses
# `bias = bias[None, :].repeat(seq_len, 1)`
# here. We find that both biases give the same results, but
# the bias below more accurately follows the original ALiBi
# paper.
bias = bias[None, :] - bias[:, None]
num_heads = alibi_slopes.shape[0]
bias = bias[None, :].repeat(
(num_heads, 1, 1)).to(alibi_slopes.device)
bias.mul_(alibi_slopes[:, None, None])
if make_attn_mask:
inf_mask = torch.empty(
(1, seq_len, seq_len),
dtype=bias.dtype).fill_(-torch.inf).triu_(diagonal=1).to(
alibi_slopes.device)
attn_biases.append((bias + inf_mask).to(dtype))
else:
attn_biases.append(bias.to(dtype))
return attn_biases
def _get_seq_len_block_table_args(
attn_metadata: ROCmFlashAttentionMetadata,
attn_type: str,
) -> tuple:
'''
The particular choice of sequence-length
attributes which should be extracted from attn_metadata is dependent
on the type of attention operation.
Decoder attn -> select entirely decoder self-attention-related fields
Encoder/decoder cross-attn -> select encoder sequence lengths
Encoder attn -> select encoder sequence lengths fields
Encoder-only attn -> select prefill sequence lengths with
bidirectional attention
Arguments:
* attn_metadata: Attention metadata structure associated with attention op
* attn_type: encoder attention, decoder self-attention,
encoder/decoder cross-attention, encoder-only
Returns:
* Appropriate sequence-lengths tensors for query and key
* Appropriate max sequence-length scalar
* Causal masking flag
'''
if attn_type == AttentionType.ENCODER:
assert attn_metadata.encoder_seq_lens is not None
assert attn_metadata.encoder_seq_lens_tensor is not None
query_seq_start_loc = torch.tensor(
list(itertools.accumulate([0] + attn_metadata.encoder_seq_lens)),
device=attn_metadata.encoder_seq_lens_tensor.device,
dtype=attn_metadata.encoder_seq_lens_tensor.dtype)
causal_mask = False
# No block tables associated with encoder attention
return (query_seq_start_loc, attn_metadata.max_encoder_seq_len,
query_seq_start_loc, attn_metadata.max_encoder_seq_len,
attn_metadata.encoder_seq_lens, causal_mask)
elif attn_type == AttentionType.ENCODER_ONLY:
# For encoder-only models, we use the prefill sequence lengths
assert attn_metadata.seq_lens is not None
assert attn_metadata.seq_lens_tensor is not None
query_seq_start_loc = torch.tensor(
list(itertools.accumulate([0] + attn_metadata.seq_lens)),
device=attn_metadata.seq_lens_tensor.device,
dtype=attn_metadata.seq_lens_tensor.dtype)
max_seq_len = attn_metadata.max_prefill_seq_len
# Encoder-only models typically use bidirectional attention
causal_mask = False
return (query_seq_start_loc, max_seq_len, query_seq_start_loc,
max_seq_len, attn_metadata.seq_lens, causal_mask)
elif attn_type == AttentionType.DECODER:
# Decoder self-attention
# Choose max_seq_len based on whether we are in prompt_run
assert attn_metadata.seq_lens is not None
assert attn_metadata.seq_lens_tensor is not None
query_seq_start_loc = torch.tensor(
list(itertools.accumulate([0] + attn_metadata.seq_lens)),
device=attn_metadata.seq_lens_tensor.device,
dtype=attn_metadata.seq_lens_tensor.dtype)
max_seq_len = attn_metadata.max_prefill_seq_len
causal_mask = True
return (query_seq_start_loc, max_seq_len, query_seq_start_loc,
max_seq_len, attn_metadata.seq_lens, causal_mask)
elif attn_type == AttentionType.ENCODER_DECODER:
assert attn_metadata.seq_lens is not None
assert attn_metadata.encoder_seq_lens_tensor is not None
query_start_loc = torch.tensor(
list(itertools.accumulate([0] + attn_metadata.seq_lens)),
device=attn_metadata.encoder_seq_lens_tensor.device,
dtype=attn_metadata.encoder_seq_lens_tensor.dtype)
assert attn_metadata.encoder_seq_lens is not None
assert attn_metadata.seq_lens_tensor is not None
key_seq_start_loc = torch.tensor(
list(itertools.accumulate([0] + attn_metadata.encoder_seq_lens)),
device=attn_metadata.seq_lens_tensor.device,
dtype=attn_metadata.seq_lens_tensor.dtype)
causal_mask = False
# Enc/dec cross-attention KVs match encoder sequence length;
# cross-attention utilizes special "cross" block tables
return (query_start_loc, attn_metadata.max_prefill_seq_len,
key_seq_start_loc, attn_metadata.max_encoder_seq_len,
attn_metadata.seq_lens, causal_mask)
else:
raise AttributeError(f"Invalid attention type {str(attn_type)}")
class ROCmFlashAttentionImpl(AttentionImpl):
"""
If the input tensors contain prompt tokens, the layout is as follows:
|<--------------- num_prompt_tokens -------------->|
|<--prompt_0-->|<--prompt_1-->|...|<--prompt_N-1-->|
Otherwise, the layout is as follows:
|<------------------ num_generation_tokens (M) ----------------->|
|<--generation_0-->|..........|<--generation_M-1-->|<--padding-->|
Generation tokens can contain padding when cuda-graph is used.
Currently, prompt tokens don't contain any padding.
The prompts might have different lengths, while the generation tokens
always have length 1.
If chunked prefill is enabled, prefill tokens and decode tokens can be
batched together in a flattened 1D query.
|<----- num_prefill_tokens ---->|<------- num_decode_tokens ----------->|
|<-prompt_0->|...|<-prompt_N-1->|<-generation_0->|...|<-generation_M-1->|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
padding between prefill and decode tokens.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
use_irope: bool = False,
) -> None:
if kv_sharing_target_layer_name is not None:
raise NotImplementedError("KV sharing is not supported in V0 "
"ROCM_FLASH backend.")
if use_irope:
logger.warning_once(
"Using irope in ROCm Flash Attention is not supported yet, it "
"will fail back to global attention for long context.")
if use_irope:
logger.warning(
"Using irope in V0 is not supported yet, it will fall back "
"to global attention for long context.")
if logits_soft_cap is None:
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
self.logits_soft_cap = 0.0
else:
self.logits_soft_cap = logits_soft_cap
self.attn_type = attn_type
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
self.sliding_window = ((sliding_window, sliding_window)
if sliding_window is not None else (-1, -1))
self.kv_cache_dtype = kv_cache_dtype
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.paged_attn_module = _get_paged_attn_module()
supported_head_sizes = self.paged_attn_module.get_supported_head_sizes(
)
if head_size not in supported_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by PagedAttention. "
f"Supported head sizes are: {supported_head_sizes}.")
self.use_naive_attn = False
# NOTE: Allow for switching between Triton and CK. Defaulting to triton.
self.use_triton_flash_attn = envs.VLLM_USE_TRITON_FLASH_ATTN
if self.use_triton_flash_attn:
if logits_soft_cap is not None:
raise ValueError(
"ROCm Triton FlashAttention does not support attention"
" logits soft capping."
" please try using the ROCm CK "
"FA backend instead by setting the env var "
"`VLLM_USE_TRITON_FLASH_ATTN=0`")
from vllm.attention.ops.triton_flash_attention import ( # noqa: F401
triton_attention)
self.triton_attn_func = triton_attention
logger.debug("Using Triton FA in ROCmBackend")
if self.sliding_window != (-1, -1):
logger.warning("ROCm Triton FA does not currently support "
"sliding window attention. If using half "
"precision, please try using the ROCm CK "
"FA backend instead by setting the env var "
"`VLLM_USE_TRITON_FLASH_ATTN=0`")
else:
# if not using triton, navi3x/navi21/navi10 do not use flash-attn
# either
if not current_platform.has_device_capability(90):
self.use_naive_attn = True
else:
try:
from flash_attn import flash_attn_varlen_func # noqa: F401
self.fa_attn_func = flash_attn_varlen_func
logger.debug("Using CK FA in ROCmBackend")
except ModuleNotFoundError:
self.use_naive_attn = True
if self.use_naive_attn:
if logits_soft_cap is not None:
raise ValueError(
"ROCm Naive FlashAttention does not support "
"attention logits soft capping.")
self.sdpa_attn_func = _sdpa_attention
logger.debug("Using naive (SDPA) attention in ROCmBackend")
self.aiter_kv_scales_initialized = False
self.force_fp8_attention = (
get_current_vllm_config() is not None
and get_current_vllm_config().model_config.override_attention_dtype
== "fp8")
def repeat_kv(self, x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=1, repeats=n_rep)"""
tokens, n_kv_heads, head_dim = x.shape
return (x[:, :,
None, :].expand(tokens, n_kv_heads, n_rep,
head_dim).reshape(tokens, n_kv_heads * n_rep,
head_dim))
def fused_output_quant_supported(self, dtype: torch.dtype, static: bool,
group_shape: GroupShape):
if self.use_triton_flash_attn:
return dtype == current_platform.fp8_dtype(
) and static and group_shape == GroupShape.PER_TENSOR
# Only supported in the Triton backend
return False
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: ROCmFlashAttentionMetadata,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.
For decoder-only models: query, key and value must be non-None.
For encoder/decoder models:
* ROCmFlashAttentionImpl.forward() may be invoked for both self- and
cross-attention layers.
* For self-attention: query, key and value must be non-None.
* For cross-attention:
* Query must be non-None
* During prefill, key and value must be non-None; key and value
get cached for use during decode.
* During decode, key and value may be None, since:
(1) key and value tensors were cached during prefill, and
(2) cross-attention key and value tensors do not grow during
decode
A note on how the attn_type (attention type enum) argument impacts
attention forward() behavior:
* DECODER: normal decoder-only behavior;
use decoder self-attention block table
* ENCODER: no KV caching; pass encoder sequence
attributes (encoder_seq_lens/encoder_seq_lens_tensor/
max_encoder_seq_len) to kernel, in lieu of decoder
sequence attributes (seq_lens/seq_lens_tensor/max_seq_len)
* ENCODER_DECODER: cross-attention behavior;
use cross-attention block table for caching KVs derived
from encoder hidden states; since KV sequence lengths
will match encoder sequence lengths, pass encoder sequence
attributes to kernel (encoder_seq_lens/encoder_seq_lens_tensor/
max_encoder_seq_len)
* ENCODER_ONLY: bidirectional attention with no KV caching;
use prefill sequence attributes
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
NOTE: kv_cache will be an empty tensor with shape [0]
for profiling run.
attn_metadata: Metadata for attention.
attn_type: Select attention type, between encoder attention,
decoder self-attention, or encoder/decoder cross-
attention. Defaults to decoder self-attention,
which is the vLLM default generally
Returns:
shape = [num_tokens, num_heads * head_size]
"""
assert output is not None, "Output tensor must be provided."
if output_scale is not None and not self.use_triton_flash_attn:
raise NotImplementedError(
"fused output quantization only supported for Triton"
" implementation in ROCMFlashAttentionImpl for now")
query = query.view(-1, self.num_heads, self.head_size)
if key is not None:
assert value is not None
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
else:
assert value is None
paged_attn = self.paged_attn_module
# Reshaping kv tensors is required for AITER paged attention kernel
# because it works on a different tensor shape,
# when the size of one element is one byte (int8/fp8 dtypes).
# This reshaping is only required on the first forward call
# and the kv cache must not be empty.
if (is_rocm_aiter_paged_attn_enabled() and kv_cache.dtype.itemsize == 1
and not self.aiter_kv_scales_initialized
and kv_cache.shape != torch.Size([0])):
num_blocks = kv_cache.shape[1]
block_size = kv_cache.shape[2] // (self.num_kv_heads *
self.head_size)
k_scale = torch.empty((self.num_kv_heads, num_blocks * block_size),
dtype=torch.float32,
device=kv_cache.device)
v_scale = torch.empty((self.num_kv_heads, num_blocks * block_size),
dtype=torch.float32,
device=kv_cache.device)
self.aiter_kv_scales_initialized = True
k_scale.fill_(layer._k_scale.item())
v_scale.fill_(layer._v_scale.item())
layer._k_scale = k_scale
layer._v_scale = v_scale
# Only update KV cache for decoder self-attention
# and encoder-decoder cross-attention
if self.attn_type not in [
AttentionType.ENCODER, AttentionType.ENCODER_ONLY
] and kv_cache.numel() > 0:
key_cache, value_cache = paged_attn.split_kv_cache(
kv_cache, self.num_kv_heads, self.head_size)
if key is not None and value is not None:
# Reshape the input keys and values and store them in the
# cache. If kv_cache is not provided, the new key and value
# tensors are not cached. This happens during the initial
# memory profiling run.
paged_attn.write_to_paged_cache(
key,
value,
key_cache,
value_cache,
attn_metadata.slot_mapping
if self.attn_type != AttentionType.ENCODER_DECODER else
attn_metadata.cross_slot_mapping,
self.kv_cache_dtype,
layer._k_scale,
layer._v_scale,
)
if self.attn_type != AttentionType.ENCODER:
num_prefill_tokens = attn_metadata.num_prefill_tokens
elif self.attn_type == AttentionType.ENCODER_ONLY:
# For encoder-only models, all tokens are processed in one go
num_prefill_tokens = query.shape[0]
else:
assert attn_metadata.num_encoder_tokens is not None
num_prefill_tokens = attn_metadata.num_encoder_tokens
# Query for decode. KV is not needed because it is already cached.
decode_query = query[num_prefill_tokens:]
# QKV for prefill.
query = query[:num_prefill_tokens]
# For encoder-only and encoder models,
# we process all tokens at once
# For decoder and encoder-decoder,
# we may need to limit key/value to prefill tokens
if key is not None and value is not None \
and self.attn_type not in [AttentionType.ENCODER_DECODER,
AttentionType.ENCODER_ONLY]:
key = key[:num_prefill_tokens]
value = value[:num_prefill_tokens]
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
# normal attention and DECODER
if self.attn_type == AttentionType.DECODER and (
kv_cache.numel() == 0 or prefill_meta.block_tables is None
or prefill_meta.block_tables.numel() == 0):
(query_seq_start_loc, query_max_seq_len, key_seq_start_loc,
key_max_seq_len, seq_lens,
causal_mask) = (prefill_meta.seq_start_loc,
prefill_meta.max_prefill_seq_len,
prefill_meta.seq_start_loc,
prefill_meta.max_prefill_seq_len,
attn_metadata.seq_lens, True)
# prefix-enabled attention and ENCODER/ENCODER_DECODER
else:
(query_seq_start_loc, query_max_seq_len, key_seq_start_loc,
key_max_seq_len, seq_lens,
causal_mask) = _get_seq_len_block_table_args(
prefill_meta, self.attn_type)
# Prompt run.
if kv_cache.numel() == 0 or prefill_meta.block_tables.numel() == 0:
# triton attention
# When block_tables are not filled, it means q and k are the
# prompt, and they have the same length.
attn_masks = None
if self.use_triton_flash_attn:
if self.alibi_slopes is not None:
attn_masks = _make_alibi_bias(
self.alibi_slopes,
query.dtype,
seq_lens,
make_attn_mask=causal_mask) # type: ignore
use_fp8_scales = (layer._q_scale and layer._k_scale
and layer._v_scale and layer._prob_scale
and (self.kv_cache_dtype == "fp8"
or self.force_fp8_attention))
full_scales = (
layer._q_scale.item(), layer._k_scale.item(),
layer._v_scale.item(),
layer._prob_scale.item()) if use_fp8_scales else None
self.triton_attn_func(
query,
key,
value,
output[:num_prefill_tokens],
query_seq_start_loc,
key_seq_start_loc,
query_max_seq_len,
key_max_seq_len,
causal_mask,
self.scale,
attn_masks[0][None]
if attn_masks is not None else None,
full_scales,
output_scale,
)
elif self.use_naive_attn:
if self.num_kv_heads != self.num_heads:
# Interleave for MQA workaround.
key = self.repeat_kv(key, self.num_queries_per_kv)
value = self.repeat_kv(value, self.num_queries_per_kv)
if self.alibi_slopes is not None:
attn_masks = _make_alibi_bias(
self.alibi_slopes,
query.dtype,
attn_metadata.seq_lens,
make_attn_mask=causal_mask) # type: ignore
query = query.movedim(0, query.dim() - 2)
key = key.movedim(0, key.dim() - 2)
value = value.movedim(0, value.dim() - 2)
# sdpa math backend attention
self.sdpa_attn_func(
query,
key,
value,
output[:num_prefill_tokens],
query_seq_start_loc,
num_prefill_tokens,
self.num_heads,
self.head_size,
self.scale,
attn_masks,
)
else:
# upstream FA does not support an output arg, copy
output[:num_prefill_tokens] = self.fa_attn_func(
q=query,
k=key,
v=value,
cu_seqlens_q=query_seq_start_loc,
cu_seqlens_k=key_seq_start_loc,
max_seqlen_q=prefill_meta.max_prefill_seq_len,
max_seqlen_k=key_max_seq_len,
softmax_scale=self.scale,
causal=causal_mask,
window_size=self.sliding_window,
alibi_slopes=self.alibi_slopes,
softcap=self.logits_soft_cap,
)
else:
# prefix-enabled attention -
# not applicable for encoder-only models
if self.attn_type != AttentionType.ENCODER_ONLY:
output[:num_prefill_tokens] = paged_attn.forward_prefix(
query,
key,
value,
self.kv_cache_dtype,
key_cache,
value_cache,
prefill_meta.block_tables,
prefill_meta.query_start_loc,
prefill_meta.seq_lens_tensor,
prefill_meta.max_query_len,
self.alibi_slopes,
self.sliding_window[0],
layer._k_scale,
layer._v_scale,
)
# Skip decode phase for encoder-only models
if (decode_meta := attn_metadata.decode_metadata) and (
self.attn_type != AttentionType.ENCODER_ONLY):
# Decoding run.
# Whether to use rocm custom paged attention or not
num_seqs, num_heads, head_size = decode_query.shape
block_size = value_cache.shape[3]
gqa_ratio = num_heads // self.num_kv_heads
from vllm.platforms.rocm import use_rocm_custom_paged_attention
use_custom = use_rocm_custom_paged_attention(
decode_query.dtype, head_size, block_size, gqa_ratio,
decode_meta.max_decode_seq_len, self.sliding_window,
self.kv_cache_dtype, self.alibi_slopes)
if use_custom:
max_seq_len = (decode_meta.max_decode_seq_len if self.attn_type
!= AttentionType.ENCODER_DECODER else
decode_meta.max_encoder_seq_len)
assert max_seq_len is not None
max_num_partitions = (
(max_seq_len + _PARTITION_SIZE_ROCM - 1) //
_PARTITION_SIZE_ROCM)
assert _PARTITION_SIZE_ROCM % block_size == 0
tmp_output = torch.empty(
size=(num_seqs, num_heads, max_num_partitions, head_size),
dtype=query.dtype,
device=output.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, max_num_partitions),
dtype=torch.float32,
device=output.device,
)
max_logits = torch.empty_like(exp_sums)
query_start_loc = None
ops.paged_attention_rocm(
output[num_prefill_tokens:],
exp_sums,
max_logits,
tmp_output,
decode_query,
key_cache,
value_cache,
self.num_kv_heads,
self.scale,
decode_meta.block_tables
if self.attn_type != AttentionType.ENCODER_DECODER else
decode_meta.cross_block_tables,
decode_meta.seq_lens_tensor
if self.attn_type != AttentionType.ENCODER_DECODER else
decode_meta.encoder_seq_lens_tensor,
query_start_loc,
block_size,
max_seq_len,
self.alibi_slopes,
self.kv_cache_dtype,
layer._k_scale,
layer._v_scale,
output_scale,
)
else:
# PagedAttention does not support fused quant, manually quantize
if output_scale is None:
out_pa = output[num_prefill_tokens:]
else:
out_pa = torch.empty_like(output[num_prefill_tokens:],
dtype=query.dtype)
out_pa[:] = paged_attn.forward_decode(
decode_query,
key_cache,
value_cache,
decode_meta.block_tables
if self.attn_type != AttentionType.ENCODER_DECODER else
decode_meta.cross_block_tables,
decode_meta.seq_lens_tensor
if self.attn_type != AttentionType.ENCODER_DECODER else
decode_meta.encoder_seq_lens_tensor,
decode_meta.max_decode_seq_len
if self.attn_type != AttentionType.ENCODER_DECODER else
decode_meta.max_encoder_seq_len,
self.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
layer._k_scale,
layer._v_scale,
)
# Manually perform quantization
if output_scale is not None:
out_uq = out_pa.view(-1, self.num_heads * self.head_size)
out_q = output.view(-1, self.num_heads * self.head_size)
ops.scaled_fp8_quant(out_uq,
output_scale,
output=out_q[num_prefill_tokens:])
# Reshape the output tensor.
return output.view(-1, self.num_heads * self.head_size)
def _sdpa_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
output: torch.Tensor,
seq_lens: torch.Tensor,
num_tokens: int,
num_heads: int,
head_size: int,
scale: float,
attn_masks: Optional[List[torch.Tensor]] = None,
) -> torch.Tensor:
start = 0
assert output.shape == (num_tokens, num_heads, head_size)
assert output.dtype == query.dtype
assert output.device == query.device
for i, seq_len in enumerate(seq_lens):
end = start + seq_len
with torch.nn.attention.sdpa_kernel(
torch.nn.attention.SDPBackend.MATH):
sub_out = torch.nn.functional.scaled_dot_product_attention(
query[:, start:end, :],
key[:, start:end, :],
value[:, start:end, :],
dropout_p=0.0,
is_causal=attn_masks is None,
attn_mask=attn_masks[i] if attn_masks else None,
scale=scale).movedim(query.dim() - 2, 0)
output[start:end, :, :] = sub_out
start = end
return output