vllm/tests/v1/executor/test_executor.py
Nick Hill 289eb6c537
[Core] Simplify async KV output aggregation (#28327)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-11-09 09:44:13 -08:00

137 lines
3.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import os
from collections.abc import Callable
from concurrent.futures import Future
from typing import Any
import pytest
from vllm.distributed.kv_transfer.kv_connector.utils import KVOutputAggregator
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.sampling_params import SamplingParams
from vllm.v1.engine.async_llm import AsyncLLM
from vllm.v1.engine.llm_engine import LLMEngine
from vllm.v1.executor.multiproc_executor import MultiprocExecutor
class Mock: ...
class CustomMultiprocExecutor(MultiprocExecutor):
def collective_rpc(
self,
method: str | Callable,
timeout: float | None = None,
args: tuple = (),
kwargs: dict | None = None,
non_block: bool = False,
unique_reply_rank: int | None = None,
kv_output_aggregator: KVOutputAggregator = None,
) -> Any | list[Any] | Future[Any | list[Any]]:
# Drop marker to show that this was run
with open(".marker", "w"):
...
return super().collective_rpc(
method,
timeout,
args,
kwargs,
non_block,
unique_reply_rank,
kv_output_aggregator,
)
CustomMultiprocExecutorAsync = CustomMultiprocExecutor
MODEL = "Qwen/Qwen3-0.6B"
def test_custom_executor_type_checking():
with pytest.raises(ValueError):
engine_args = EngineArgs(
model=MODEL,
gpu_memory_utilization=0.2,
max_model_len=8192,
distributed_executor_backend=Mock,
)
LLMEngine.from_engine_args(engine_args)
with pytest.raises(ValueError):
engine_args = AsyncEngineArgs(
model=MODEL,
gpu_memory_utilization=0.2,
max_model_len=8192,
distributed_executor_backend=Mock,
)
AsyncLLM.from_engine_args(engine_args)
@pytest.mark.parametrize(
"distributed_executor_backend",
[
CustomMultiprocExecutor,
"tests.v1.executor.test_executor.CustomMultiprocExecutor",
],
)
def test_custom_executor(distributed_executor_backend, tmp_path):
cwd = os.path.abspath(".")
os.chdir(tmp_path)
try:
assert not os.path.exists(".marker")
engine_args = EngineArgs(
model=MODEL,
gpu_memory_utilization=0.2,
max_model_len=8192,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True, # reduce test time
)
engine = LLMEngine.from_engine_args(engine_args)
sampling_params = SamplingParams(max_tokens=1)
engine.add_request("0", "foo", sampling_params)
engine.step()
assert os.path.exists(".marker")
finally:
os.chdir(cwd)
@pytest.mark.parametrize(
"distributed_executor_backend",
[
CustomMultiprocExecutorAsync,
"tests.v1.executor.test_executor.CustomMultiprocExecutorAsync",
],
)
def test_custom_executor_async(distributed_executor_backend, tmp_path):
cwd = os.path.abspath(".")
os.chdir(tmp_path)
try:
assert not os.path.exists(".marker")
engine_args = AsyncEngineArgs(
model=MODEL,
gpu_memory_utilization=0.2,
max_model_len=8192,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True, # reduce test time
)
engine = AsyncLLM.from_engine_args(engine_args)
sampling_params = SamplingParams(max_tokens=1)
async def t():
stream = engine.generate(
request_id="0", prompt="foo", sampling_params=sampling_params
)
async for x in stream:
...
asyncio.run(t())
assert os.path.exists(".marker")
finally:
os.chdir(cwd)