vllm/vllm/profiler/utils.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

148 lines
4.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import dataclasses
from typing import Callable, Dict, List, Type, Union
from torch._C._profiler import _EventType, _ProfilerEvent, _TensorMetadata
#
# String / Print Manipulation
#
def trim_string_front(string, width):
if len(string) > width:
offset = len(string) - width + 3
string = string[offset:]
if len(string) > 3:
string = "..." + string[3:]
return string
def trim_string_back(string, width):
if len(string) > width:
offset = len(string) - width + 3
string = string[:-offset]
if len(string) > 3:
string = string + "..."
return string
class TablePrinter:
def __init__(self, row_cls: Type[dataclasses.dataclass],
column_widths: Dict[str, int]):
self.row_cls = row_cls
self.fieldnames = [x.name for x in dataclasses.fields(row_cls)]
self.column_widths = column_widths
assert set(self.column_widths.keys()) == set(self.fieldnames)
def print_table(self, rows: List[dataclasses.dataclass]):
self._print_header()
self._print_line()
for row in rows:
self._print_row(row)
def _print_header(self):
for i, f in enumerate(self.fieldnames):
last = (i == len(self.fieldnames) - 1)
col_width = self.column_widths[f]
print(trim_string_back(f, col_width).ljust(col_width),
end=" | " if not last else "\n")
def _print_row(self, row):
assert isinstance(row, self.row_cls)
for i, f in enumerate(self.fieldnames):
last = (i == len(self.fieldnames) - 1)
col_width = self.column_widths[f]
val = getattr(row, f)
val_str = ""
if isinstance(val, str):
val_str = trim_string_back(val, col_width).ljust(col_width)
elif type(val) in [float, int]:
val_str = f"{float(val):>.2f}".rjust(col_width)
else:
val_str = f"{val}".rjust(col_width)
print(val_str, end=" | " if not last else "\n")
def _print_line(self):
total_col_width = 0
for column_width in self.column_widths.values():
total_col_width += column_width
print("=" * (total_col_width + 3 * (len(self.column_widths) - 1)))
def indent_string(string: str,
indent: int,
indent_style: Union[Callable[[int], str], str] = " ") -> str:
if indent:
if isinstance(indent_style, str):
return indent_style * indent + string
else:
return indent_style(indent) + string
else:
return string
#
# _ProfilerEvent utils
#
def event_has_module(event: _ProfilerEvent) -> bool:
event_type, typed_event = event.typed
if event_type == _EventType.PyCall:
return typed_event.module is not None
return False
def event_is_torch_op(event: _ProfilerEvent) -> bool:
return event.tag == _EventType.TorchOp
def event_arg_repr(arg) -> str:
if arg is None or type(arg) in [float, int, bool, str]:
return f"{arg}"
elif isinstance(arg, list):
return f"[{', '.join([event_arg_repr(x) for x in arg])}]"
elif isinstance(arg, tuple):
return f"({', '.join([event_arg_repr(x) for x in arg])})"
else:
assert isinstance(arg,
_TensorMetadata), f"Unsupported type: {type(arg)}"
sizes_str = ', '.join([str(x) for x in arg.sizes])
return f"{str(arg.dtype).replace('torch.', '')}[{sizes_str}]"
def event_torch_op_repr(event: _ProfilerEvent) -> str:
assert event.tag == _EventType.TorchOp
args_str = ', '.join([event_arg_repr(x) for x in event.typed[1].inputs])
return f"{event.name}({args_str})".replace("aten::", "")
def event_module_repr(event: _ProfilerEvent) -> str:
assert event_has_module(event)
module = event.typed[1].module
if module.parameters and len(module.parameters) > 0:
args_str = ', '.join(
[f'{x[0]}={event_arg_repr(x[1])}' for x in module.parameters])
return f"{module.cls_name}({args_str})"
else:
return module.cls_name
def event_torch_op_stack_trace(curr_event: _ProfilerEvent,
until: Callable[[_ProfilerEvent], bool]) -> str:
trace = ""
curr_event = curr_event.parent
while curr_event and not until(curr_event):
if event_is_torch_op(curr_event):
if len(trace) > 0:
trace += " <- "
trace += event_torch_op_repr(curr_event)
curr_event = curr_event.parent
return trace