Hyogeun Oh (오효근) 41f17bf290
[Docs] Fix warnings in mkdocs build (continued) (#24740)
Signed-off-by: Zerohertz <ohg3417@gmail.com>
2025-09-12 06:43:15 -07:00

716 lines
25 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable, Mapping, Sequence
from typing import Annotated, Literal, Optional, Union
import torch
import torch.nn as nn
from transformers import (BatchFeature, Blip2Config, Blip2QFormerConfig,
apply_chunking_to_forward)
from vllm.config import CacheConfig, VllmConfig
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargsItems)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptIndexTargets,
PromptInsertion, PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .blip import BlipVisionModel
from .interfaces import (MultiModalEmbeddings, SupportsMultiModal, SupportsPP,
SupportsQuant)
from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
maybe_prefix, merge_multimodal_embeddings)
# We use this internally as placeholders since there is no image token
# defined on the HuggingFace repo
_IMAGE_TOKEN_ID = 50265
class Blip2ImagePixelInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- c: Number of channels (3)
- h: Height of each image
- w: Width of each image
"""
type: Literal["pixel_values"]
data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
class Blip2ImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- f: Image feature size
- h: Hidden size (must match the hidden size of language model backbone)
"""
type: Literal["image_embeds"]
data: Annotated[torch.Tensor, TensorShape("bn", "f", "h")]
Blip2ImageInputs = Union[Blip2ImagePixelInputs, Blip2ImageEmbeddingInputs]
class Blip2QFormerMultiHeadAttention(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
is_cross_attention: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of "
f"the number of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = (config.hidden_size //
config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.scaling = self.attention_head_size**-0.5
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
kv_hidden_size = config.encoder_hidden_size
else:
kv_hidden_size = config.hidden_size
self.key = nn.Linear(kv_hidden_size, self.all_head_size)
self.value = nn.Linear(kv_hidden_size, self.all_head_size)
self.position_embedding_type = getattr(config,
"position_embedding_type",
"absolute")
if self.position_embedding_type != "absolute":
raise NotImplementedError("Unsupported position_embedding_type: "
f"{self.position_embedding_type}")
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
x = x.view(*x.size()[:-1], self.num_attention_heads,
self.attention_head_size)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
):
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(
self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(
self.value(encoder_hidden_states))
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
mixed_query_layer = self.query(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
attention_scores = torch.matmul(query_layer,
key_layer.transpose(-1, -2))
attention_probs = torch.softmax(attention_scores * self.scaling,
dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
context_layer = context_layer.view(*context_layer.size()[:-2],
self.all_head_size)
return context_layer
class Blip2QFormerSelfOutput(nn.Module):
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
hidden_states: torch.Tensor,
input_tensor: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Blip2QFormerAttention(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
is_cross_attention: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.attention = Blip2QFormerMultiHeadAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=is_cross_attention,
prefix=f"{prefix}.attention",
)
self.output = Blip2QFormerSelfOutput(config, prefix=f"{prefix}.output")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
) -> tuple[torch.Tensor]:
self_output = self.attention(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
attention_output = self.output(self_output, hidden_states)
return attention_output
class Blip2QFormerIntermediate(nn.Module):
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = get_act_fn(config.hidden_act)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class Blip2QFormerOutput(nn.Module):
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
hidden_states: torch.Tensor,
input_tensor: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class Blip2QFormerLayer(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
layer_idx: int,
prefix: str = "",
) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = Blip2QFormerAttention(config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.attention")
self.layer_idx = layer_idx
if layer_idx % config.cross_attention_frequency == 0:
self.crossattention = Blip2QFormerAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=True,
prefix=f"{prefix}.crossattention")
self.has_cross_attention = True
else:
self.has_cross_attention = False
self.intermediate_query = Blip2QFormerIntermediate(
config, prefix=f"{prefix}.intermediate_query")
self.output_query = Blip2QFormerOutput(config,
prefix=f"{prefix}.output_query")
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
query_length: int,
):
attention_output = self.attention(hidden_states)
if query_length > 0:
query_attention_output = attention_output[:, :query_length, :]
if self.has_cross_attention:
query_attention_output = self.crossattention(
query_attention_output,
encoder_hidden_states=encoder_hidden_states,
)
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk_query,
self.chunk_size_feed_forward,
self.seq_len_dim,
query_attention_output,
)
if attention_output.shape[1] > query_length:
layer_output_text = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output[:, query_length:, :],
)
layer_output = torch.cat([layer_output, layer_output_text],
dim=1)
else:
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
return layer_output
def feed_forward_chunk(self,
attention_output: torch.Tensor) -> torch.Tensor:
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
def feed_forward_chunk_query(
self, attention_output: torch.Tensor) -> torch.Tensor:
intermediate_output = self.intermediate_query(attention_output)
layer_output = self.output_query(intermediate_output, attention_output)
return layer_output
class Blip2QFormerEncoder(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([
Blip2QFormerLayer(config,
quant_config=quant_config,
cache_config=cache_config,
layer_idx=layer_idx,
prefix=f"{prefix}.layer.{layer_idx}")
for layer_idx in range(config.num_hidden_layers)
])
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
query_length: int,
) -> torch.Tensor:
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
hidden_states = layer_module(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
query_length=query_length,
)
return hidden_states
# Adapted from https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/models/blip_2/modeling_blip_2.py#L1025
class Blip2QFormerModel(nn.Module):
def __init__(
self,
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.encoder = Blip2QFormerEncoder(config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.encoder")
def forward(
self,
query_embeds: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
) -> torch.Tensor:
query_length = query_embeds.shape[1]
embedding_output = self.layernorm(query_embeds)
embedding_output = self.dropout(embedding_output)
sequence_output = self.encoder(
embedding_output,
encoder_hidden_states=encoder_hidden_states,
query_length=query_length,
)
return sequence_output
class Blip2ProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(Blip2Config)
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": 1}
def get_num_image_tokens(self) -> int:
hf_config = self.get_hf_config()
return hf_config.num_query_tokens
class Blip2DummyInputsBuilder(BaseDummyInputsBuilder[Blip2ProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
hf_config = self.info.get_hf_config()
vision_config = hf_config.vision_config
max_image_size = vision_config.image_size
num_images = mm_counts.get("image", 0)
return {
"image":
self._get_dummy_images(width=max_image_size,
height=max_image_size,
num_images=num_images)
}
class Blip2MultiModalProcessor(BaseMultiModalProcessor[Blip2ProcessingInfo]):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
if not mm_data:
# HF processor always adds placeholders even when there's no image
tokenizer = self.info.get_tokenizer()
prompt_ids = tokenizer.encode(prompt)
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
return super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
tokenizer = self.info.get_tokenizer()
vocab = tokenizer.get_vocab()
image_token_id = vocab["<image>"]
num_image_tokens = self.info.get_num_image_tokens()
image_tokens = [image_token_id] * num_image_tokens
return [
PromptInsertion(
modality="image",
target=PromptIndexTargets.start(),
insertion=image_tokens,
)
]
@MULTIMODAL_REGISTRY.register_processor(Blip2MultiModalProcessor,
info=Blip2ProcessingInfo,
dummy_inputs=Blip2DummyInputsBuilder)
class Blip2ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
SupportsQuant):
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
if modality.startswith("image"):
return None
raise ValueError("Only image modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
# TODO: Optionally initializes this for supporting embeddings.
self.vision_model = BlipVisionModel(config.vision_config, quant_config)
self.query_tokens = nn.Parameter(
torch.zeros(1, config.num_query_tokens,
config.qformer_config.hidden_size))
self.qformer = Blip2QFormerModel(config.qformer_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.qformer")
self.language_projection = nn.Linear(
config.qformer_config.hidden_size,
config.text_config.hidden_size,
bias=True,
)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[Blip2ImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
expected_h = expected_w = self.config.vision_config.image_size
return Blip2ImagePixelInputs(type="pixel_values",
data=flatten_bn(pixel_values,
concat=True),
resolve_bindings={
"h": expected_h,
"w": expected_w
})
if image_embeds is not None:
return Blip2ImageEmbeddingInputs(
type="image_embeds",
data=flatten_bn(image_embeds, concat=True),
)
raise AssertionError("This line should be unreachable.")
def _image_pixels_to_features(self, vision_model: BlipVisionModel,
pixel_values: torch.Tensor) -> torch.Tensor:
# NOTE: we skip the step to select the vision feature layer since
# this is already done inside the vision tower
image_features = vision_model(pixel_values)
return image_features
def _process_image_pixels(self,
inputs: Blip2ImagePixelInputs) -> torch.Tensor:
assert self.vision_model is not None
pixel_values = inputs["data"]
return self._image_pixels_to_features(self.vision_model, pixel_values)
def _process_image_input(self,
image_input: Blip2ImageInputs) -> torch.Tensor:
if image_input["type"] == "image_embeds":
return image_input["data"]
assert self.vision_model is not None
image_features = self._process_image_pixels(image_input)
query_tokens = self.query_tokens.expand(image_features.shape[0], -1,
-1)
query_output = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_features,
)
return self.language_projection(query_output)
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(self,
**kwargs: object) -> MultiModalEmbeddings:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return []
vision_embeddings = self._process_image_input(image_input)
return vision_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None \
and len(multimodal_embeddings) != 0:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
_IMAGE_TOKEN_ID)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> IntermediateTensors:
"""Run forward pass for BLIP-2.
One key thing to understand is the `input_ids` already accounts for the
positions of the to-be-inserted image embeddings.
Concretely, consider a text prompt:
`"Question: What's the content of the image? Answer:"`.
Tokenizer outputs:
`[2, 45641, 35, 653, 18, 5, 1383, 9, 5, 2274, 116, 31652, 35]`.
To reserve space in KV cache, we have to insert placeholder tokens
before they are inputted to the model, so the input processor prepends
dummy tokens (denoted as `50265`), resulting in:
`[50265, ..., 50265, 2, 45641, 35, ..., 31652, 35]`.
We insert 32 tokens since it corresponds to the number of query
embeddings outputted by the Q-Former and inputted to the language model.
This way, the `positions` and `attn_metadata` are consistent
with the `input_ids`.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
Info:
[Blip2ImageInputs][]
"""
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None
hidden_states = self.language_model.model(input_ids,
positions,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)