mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 03:05:02 +08:00
716 lines
25 KiB
Python
716 lines
25 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Literal, Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import (BatchFeature, Blip2Config, Blip2QFormerConfig,
|
|
apply_chunking_to_forward)
|
|
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
|
MultiModalKwargsItems)
|
|
from vllm.multimodal.parse import MultiModalDataItems
|
|
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
|
BaseProcessingInfo, PromptIndexTargets,
|
|
PromptInsertion, PromptUpdate)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .blip import BlipVisionModel
|
|
from .interfaces import (MultiModalEmbeddings, SupportsMultiModal, SupportsPP,
|
|
SupportsQuant)
|
|
from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
|
|
maybe_prefix, merge_multimodal_embeddings)
|
|
|
|
# We use this internally as placeholders since there is no image token
|
|
# defined on the HuggingFace repo
|
|
_IMAGE_TOKEN_ID = 50265
|
|
|
|
|
|
class Blip2ImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- c: Number of channels (3)
|
|
- h: Height of each image
|
|
- w: Width of each image
|
|
"""
|
|
type: Literal["pixel_values"]
|
|
data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
|
|
|
|
|
|
class Blip2ImageEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- f: Image feature size
|
|
- h: Hidden size (must match the hidden size of language model backbone)
|
|
"""
|
|
type: Literal["image_embeds"]
|
|
data: Annotated[torch.Tensor, TensorShape("bn", "f", "h")]
|
|
|
|
|
|
Blip2ImageInputs = Union[Blip2ImagePixelInputs, Blip2ImageEmbeddingInputs]
|
|
|
|
|
|
class Blip2QFormerMultiHeadAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: Blip2QFormerConfig,
|
|
*,
|
|
quant_config: Optional[QuantizationConfig],
|
|
cache_config: Optional[CacheConfig],
|
|
is_cross_attention: bool = False,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
if config.hidden_size % config.num_attention_heads != 0:
|
|
raise ValueError(
|
|
f"The hidden size ({config.hidden_size}) is not a multiple of "
|
|
f"the number of attention heads ({config.num_attention_heads})"
|
|
)
|
|
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.attention_head_size = (config.hidden_size //
|
|
config.num_attention_heads)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
self.scaling = self.attention_head_size**-0.5
|
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
|
if is_cross_attention:
|
|
kv_hidden_size = config.encoder_hidden_size
|
|
else:
|
|
kv_hidden_size = config.hidden_size
|
|
self.key = nn.Linear(kv_hidden_size, self.all_head_size)
|
|
self.value = nn.Linear(kv_hidden_size, self.all_head_size)
|
|
|
|
self.position_embedding_type = getattr(config,
|
|
"position_embedding_type",
|
|
"absolute")
|
|
if self.position_embedding_type != "absolute":
|
|
raise NotImplementedError("Unsupported position_embedding_type: "
|
|
f"{self.position_embedding_type}")
|
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
|
|
|
def transpose_for_scores(self, x):
|
|
x = x.view(*x.size()[:-1], self.num_attention_heads,
|
|
self.attention_head_size)
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
):
|
|
is_cross_attention = encoder_hidden_states is not None
|
|
|
|
if is_cross_attention:
|
|
key_layer = self.transpose_for_scores(
|
|
self.key(encoder_hidden_states))
|
|
value_layer = self.transpose_for_scores(
|
|
self.value(encoder_hidden_states))
|
|
else:
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
|
|
|
mixed_query_layer = self.query(hidden_states)
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
|
|
|
attention_scores = torch.matmul(query_layer,
|
|
key_layer.transpose(-1, -2))
|
|
attention_probs = torch.softmax(attention_scores * self.scaling,
|
|
dim=-1)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs_dropped = self.dropout(attention_probs)
|
|
|
|
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
context_layer = context_layer.view(*context_layer.size()[:-2],
|
|
self.all_head_size)
|
|
|
|
return context_layer
|
|
|
|
|
|
class Blip2QFormerSelfOutput(nn.Module):
|
|
|
|
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
input_tensor: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class Blip2QFormerAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: Blip2QFormerConfig,
|
|
*,
|
|
quant_config: Optional[QuantizationConfig],
|
|
cache_config: Optional[CacheConfig],
|
|
is_cross_attention: bool = False,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.attention = Blip2QFormerMultiHeadAttention(
|
|
config,
|
|
quant_config=quant_config,
|
|
cache_config=cache_config,
|
|
is_cross_attention=is_cross_attention,
|
|
prefix=f"{prefix}.attention",
|
|
)
|
|
|
|
self.output = Blip2QFormerSelfOutput(config, prefix=f"{prefix}.output")
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
) -> tuple[torch.Tensor]:
|
|
self_output = self.attention(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
)
|
|
attention_output = self.output(self_output, hidden_states)
|
|
|
|
return attention_output
|
|
|
|
|
|
class Blip2QFormerIntermediate(nn.Module):
|
|
|
|
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
|
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.intermediate_act_fn = get_act_fn(config.hidden_act)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Blip2QFormerOutput(nn.Module):
|
|
|
|
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
input_tensor: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class Blip2QFormerLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: Blip2QFormerConfig,
|
|
*,
|
|
quant_config: Optional[QuantizationConfig],
|
|
cache_config: Optional[CacheConfig],
|
|
layer_idx: int,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
|
self.seq_len_dim = 1
|
|
self.attention = Blip2QFormerAttention(config,
|
|
quant_config=quant_config,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.attention")
|
|
|
|
self.layer_idx = layer_idx
|
|
|
|
if layer_idx % config.cross_attention_frequency == 0:
|
|
self.crossattention = Blip2QFormerAttention(
|
|
config,
|
|
quant_config=quant_config,
|
|
cache_config=cache_config,
|
|
is_cross_attention=True,
|
|
prefix=f"{prefix}.crossattention")
|
|
self.has_cross_attention = True
|
|
else:
|
|
self.has_cross_attention = False
|
|
|
|
self.intermediate_query = Blip2QFormerIntermediate(
|
|
config, prefix=f"{prefix}.intermediate_query")
|
|
self.output_query = Blip2QFormerOutput(config,
|
|
prefix=f"{prefix}.output_query")
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor,
|
|
query_length: int,
|
|
):
|
|
attention_output = self.attention(hidden_states)
|
|
|
|
if query_length > 0:
|
|
query_attention_output = attention_output[:, :query_length, :]
|
|
|
|
if self.has_cross_attention:
|
|
query_attention_output = self.crossattention(
|
|
query_attention_output,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
)
|
|
|
|
layer_output = apply_chunking_to_forward(
|
|
self.feed_forward_chunk_query,
|
|
self.chunk_size_feed_forward,
|
|
self.seq_len_dim,
|
|
query_attention_output,
|
|
)
|
|
|
|
if attention_output.shape[1] > query_length:
|
|
layer_output_text = apply_chunking_to_forward(
|
|
self.feed_forward_chunk,
|
|
self.chunk_size_feed_forward,
|
|
self.seq_len_dim,
|
|
attention_output[:, query_length:, :],
|
|
)
|
|
layer_output = torch.cat([layer_output, layer_output_text],
|
|
dim=1)
|
|
else:
|
|
layer_output = apply_chunking_to_forward(
|
|
self.feed_forward_chunk,
|
|
self.chunk_size_feed_forward,
|
|
self.seq_len_dim,
|
|
attention_output,
|
|
)
|
|
|
|
return layer_output
|
|
|
|
def feed_forward_chunk(self,
|
|
attention_output: torch.Tensor) -> torch.Tensor:
|
|
intermediate_output = self.intermediate(attention_output)
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
return layer_output
|
|
|
|
def feed_forward_chunk_query(
|
|
self, attention_output: torch.Tensor) -> torch.Tensor:
|
|
intermediate_output = self.intermediate_query(attention_output)
|
|
layer_output = self.output_query(intermediate_output, attention_output)
|
|
return layer_output
|
|
|
|
|
|
class Blip2QFormerEncoder(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: Blip2QFormerConfig,
|
|
*,
|
|
quant_config: Optional[QuantizationConfig],
|
|
cache_config: Optional[CacheConfig],
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.layer = nn.ModuleList([
|
|
Blip2QFormerLayer(config,
|
|
quant_config=quant_config,
|
|
cache_config=cache_config,
|
|
layer_idx=layer_idx,
|
|
prefix=f"{prefix}.layer.{layer_idx}")
|
|
for layer_idx in range(config.num_hidden_layers)
|
|
])
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor,
|
|
query_length: int,
|
|
) -> torch.Tensor:
|
|
for i in range(self.config.num_hidden_layers):
|
|
layer_module = self.layer[i]
|
|
|
|
hidden_states = layer_module(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
query_length=query_length,
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
|
|
# Adapted from https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/models/blip_2/modeling_blip_2.py#L1025
|
|
class Blip2QFormerModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: Blip2QFormerConfig,
|
|
*,
|
|
quant_config: Optional[QuantizationConfig],
|
|
cache_config: Optional[CacheConfig],
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
self.encoder = Blip2QFormerEncoder(config,
|
|
quant_config=quant_config,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.encoder")
|
|
|
|
def forward(
|
|
self,
|
|
query_embeds: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor,
|
|
) -> torch.Tensor:
|
|
query_length = query_embeds.shape[1]
|
|
|
|
embedding_output = self.layernorm(query_embeds)
|
|
embedding_output = self.dropout(embedding_output)
|
|
|
|
sequence_output = self.encoder(
|
|
embedding_output,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
query_length=query_length,
|
|
)
|
|
|
|
return sequence_output
|
|
|
|
|
|
class Blip2ProcessingInfo(BaseProcessingInfo):
|
|
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(Blip2Config)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"image": 1}
|
|
|
|
def get_num_image_tokens(self) -> int:
|
|
hf_config = self.get_hf_config()
|
|
return hf_config.num_query_tokens
|
|
|
|
|
|
class Blip2DummyInputsBuilder(BaseDummyInputsBuilder[Blip2ProcessingInfo]):
|
|
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
return ""
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> MultiModalDataDict:
|
|
hf_config = self.info.get_hf_config()
|
|
vision_config = hf_config.vision_config
|
|
|
|
max_image_size = vision_config.image_size
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
return {
|
|
"image":
|
|
self._get_dummy_images(width=max_image_size,
|
|
height=max_image_size,
|
|
num_images=num_images)
|
|
}
|
|
|
|
|
|
class Blip2MultiModalProcessor(BaseMultiModalProcessor[Blip2ProcessingInfo]):
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
if not mm_data:
|
|
# HF processor always adds placeholders even when there's no image
|
|
tokenizer = self.info.get_tokenizer()
|
|
prompt_ids = tokenizer.encode(prompt)
|
|
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
|
|
|
|
return super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.batched("image"),
|
|
image_embeds=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
tokenizer = self.info.get_tokenizer()
|
|
vocab = tokenizer.get_vocab()
|
|
|
|
image_token_id = vocab["<image>"]
|
|
num_image_tokens = self.info.get_num_image_tokens()
|
|
image_tokens = [image_token_id] * num_image_tokens
|
|
|
|
return [
|
|
PromptInsertion(
|
|
modality="image",
|
|
target=PromptIndexTargets.start(),
|
|
insertion=image_tokens,
|
|
)
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(Blip2MultiModalProcessor,
|
|
info=Blip2ProcessingInfo,
|
|
dummy_inputs=Blip2DummyInputsBuilder)
|
|
class Blip2ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
|
|
SupportsQuant):
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
|
|
if modality.startswith("image"):
|
|
return None
|
|
|
|
raise ValueError("Only image modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
# TODO: Optionally initializes this for supporting embeddings.
|
|
self.vision_model = BlipVisionModel(config.vision_config, quant_config)
|
|
|
|
self.query_tokens = nn.Parameter(
|
|
torch.zeros(1, config.num_query_tokens,
|
|
config.qformer_config.hidden_size))
|
|
|
|
self.qformer = Blip2QFormerModel(config.qformer_config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qformer")
|
|
|
|
self.language_projection = nn.Linear(
|
|
config.qformer_config.hidden_size,
|
|
config.text_config.hidden_size,
|
|
bias=True,
|
|
)
|
|
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors)
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object) -> Optional[Blip2ImageInputs]:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None:
|
|
expected_h = expected_w = self.config.vision_config.image_size
|
|
return Blip2ImagePixelInputs(type="pixel_values",
|
|
data=flatten_bn(pixel_values,
|
|
concat=True),
|
|
resolve_bindings={
|
|
"h": expected_h,
|
|
"w": expected_w
|
|
})
|
|
|
|
if image_embeds is not None:
|
|
return Blip2ImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
data=flatten_bn(image_embeds, concat=True),
|
|
)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _image_pixels_to_features(self, vision_model: BlipVisionModel,
|
|
pixel_values: torch.Tensor) -> torch.Tensor:
|
|
|
|
# NOTE: we skip the step to select the vision feature layer since
|
|
# this is already done inside the vision tower
|
|
image_features = vision_model(pixel_values)
|
|
|
|
return image_features
|
|
|
|
def _process_image_pixels(self,
|
|
inputs: Blip2ImagePixelInputs) -> torch.Tensor:
|
|
assert self.vision_model is not None
|
|
|
|
pixel_values = inputs["data"]
|
|
|
|
return self._image_pixels_to_features(self.vision_model, pixel_values)
|
|
|
|
def _process_image_input(self,
|
|
image_input: Blip2ImageInputs) -> torch.Tensor:
|
|
|
|
if image_input["type"] == "image_embeds":
|
|
return image_input["data"]
|
|
|
|
assert self.vision_model is not None
|
|
image_features = self._process_image_pixels(image_input)
|
|
|
|
query_tokens = self.query_tokens.expand(image_features.shape[0], -1,
|
|
-1)
|
|
query_output = self.qformer(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_features,
|
|
)
|
|
|
|
return self.language_projection(query_output)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_multimodal_embeddings(self,
|
|
**kwargs: object) -> MultiModalEmbeddings:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return []
|
|
vision_embeddings = self._process_image_input(image_input)
|
|
return vision_embeddings
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
|
if multimodal_embeddings is not None \
|
|
and len(multimodal_embeddings) != 0:
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids, inputs_embeds, multimodal_embeddings,
|
|
_IMAGE_TOKEN_ID)
|
|
return inputs_embeds
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs: object,
|
|
) -> IntermediateTensors:
|
|
"""Run forward pass for BLIP-2.
|
|
|
|
One key thing to understand is the `input_ids` already accounts for the
|
|
positions of the to-be-inserted image embeddings.
|
|
|
|
Concretely, consider a text prompt:
|
|
`"Question: What's the content of the image? Answer:"`.
|
|
|
|
Tokenizer outputs:
|
|
`[2, 45641, 35, 653, 18, 5, 1383, 9, 5, 2274, 116, 31652, 35]`.
|
|
|
|
To reserve space in KV cache, we have to insert placeholder tokens
|
|
before they are inputted to the model, so the input processor prepends
|
|
dummy tokens (denoted as `50265`), resulting in:
|
|
`[50265, ..., 50265, 2, 45641, 35, ..., 31652, 35]`.
|
|
|
|
We insert 32 tokens since it corresponds to the number of query
|
|
embeddings outputted by the Q-Former and inputted to the language model.
|
|
|
|
This way, the `positions` and `attn_metadata` are consistent
|
|
with the `input_ids`.
|
|
|
|
Args:
|
|
input_ids: Flattened (concatenated) input_ids corresponding to a
|
|
batch.
|
|
|
|
Info:
|
|
[Blip2ImageInputs][]
|
|
"""
|
|
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
|
# condition is for v0 compatibility.
|
|
elif inputs_embeds is None:
|
|
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
|
|
inputs_embeds = self.get_input_embeddings(input_ids,
|
|
vision_embeddings)
|
|
input_ids = None
|
|
|
|
hidden_states = self.language_model.model(input_ids,
|
|
positions,
|
|
intermediate_tensors,
|
|
inputs_embeds=inputs_embeds)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
return self.language_model.compute_logits(hidden_states,
|
|
sampling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|