vllm/vllm/model_executor/models/mistral_large_3_eagle.py
Julien Denize d8c6210eea
Add Mistral Large 3 and Ministral 3 (#29757)
Signed-off-by: Julien Denize <julien.denize@mistral.ai>
Signed-off-by: Julien Denize <40604584+juliendenize@users.noreply.github.com>
Signed-off-by: Mickael Seznec <mickael@mistral.ai>
Signed-off-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Roger Wang <hey@rogerw.io>
Co-authored-by: Mickael Seznec <mickael@mistral.ai>
2025-12-02 10:29:00 +00:00

166 lines
5.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
from functools import partial
import torch
import torch.nn as nn
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed.parallel_state import get_pp_group
from vllm.logger import init_logger
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import RowParallelLinear
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.models.deepseek_v2 import (
DeepseekV2DecoderLayer,
DeepseekV2Model,
)
from vllm.model_executor.models.interfaces import MultiModalEmbeddings
from vllm.model_executor.models.mistral_large_3 import MistralLarge3ForCausalLM
from vllm.multimodal.inputs import NestedTensors
from .utils import (
_merge_multimodal_embeddings,
make_empty_intermediate_tensors_factory,
maybe_prefix,
)
logger = init_logger(__name__)
@support_torch_compile
class EagleMistralLarge3Model(DeepseekV2Model):
def __init__(
self, *, vllm_config: VllmConfig, prefix: str = "", start_layer_id: int = 0
):
nn.Module.__init__(self)
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.vllm_config = vllm_config
self.vocab_size = config.vocab_size
assert get_pp_group().world_size == 1
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens",
)
self.layers = nn.ModuleList(
[
DeepseekV2DecoderLayer(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, f"layers.{i + start_layer_id}"),
)
for i in range(self.config.num_hidden_layers)
]
)
self.start_layer = 0
self.end_layer = self.config.num_hidden_layers
self.fc = RowParallelLinear(
self.config.hidden_size * 2,
self.config.hidden_size,
bias=False,
input_is_parallel=False,
quant_config=quant_config,
return_bias=False,
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.embed_input_ids(input_ids)
inputs_embeds = self.fc(torch.cat((inputs_embeds, hidden_states), dim=-1))
output = super().forward(
input_ids, positions, intermediate_tensors=None, inputs_embeds=inputs_embeds
)
assert isinstance(output, torch.Tensor)
return output
class EagleMistralLarge3ForCausalLM(MistralLarge3ForCausalLM):
remapping = MistralLarge3ForCausalLM.remapping | {
r"eagle_linear\.weight": r"model.fc.weight",
r"eagle_linear\.qscale_act": r"model.fc.input_scale",
r"eagle_linear\.qscale_weight": r"model.fc.weight_scale",
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
target_layer_num = vllm_config.model_config.get_num_layers(
vllm_config.parallel_config
)
vllm_config.model_config = vllm_config.speculative_config.draft_model_config
# draft model quantization config may differ from target model
self.quant_config = VllmConfig.get_quantization_config(
vllm_config.speculative_config.draft_model_config, vllm_config.load_config
)
vllm_config.quant_config = self.quant_config
self.model_cls = partial(
EagleMistralLarge3Model, start_layer_id=target_layer_num
)
super().__init__(vllm_config=vllm_config, prefix=prefix)
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: MultiModalEmbeddings | None = None,
*,
is_multimodal: torch.Tensor | None = None,
handle_oov_mm_token: bool = False,
) -> torch.Tensor:
inputs_embeds = super().embed_input_ids(input_ids)
if multimodal_embeddings is None or len(multimodal_embeddings) == 0:
return inputs_embeds
assert is_multimodal is not None
return _merge_multimodal_embeddings(
inputs_embeds=inputs_embeds,
multimodal_embeddings=multimodal_embeddings,
is_multimodal=is_multimodal,
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
hidden_states = self.model(input_ids, positions, hidden_states, inputs_embeds)
return hidden_states, hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
# Pretend we've loaded the embedding and lm_head weights
# (later copied from target model)
return super().load_weights(weights) | {
"model.embed_tokens.weight",
"lm_head.weight",
}
def embed_input_ids(
self,
input_ids: torch.Tensor,
multimodal_embeddings: NestedTensors | None = None,
is_multimodal: torch.Tensor | None = None,
) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)