mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 17:16:03 +08:00
1448 lines
51 KiB
Python
1448 lines
51 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import math
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Any, Literal, TypeAlias
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import (
|
|
BatchFeature,
|
|
Phi4MultimodalAudioConfig,
|
|
Phi4MultimodalConfig,
|
|
Phi4MultimodalFeatureExtractor,
|
|
Phi4MultimodalImageProcessorFast,
|
|
)
|
|
from transformers import Phi4MultimodalProcessor as Phi4MMProcessor
|
|
from transformers.models.phi4_multimodal.modeling_phi4_multimodal import (
|
|
Phi4MultimodalAudioConvModule,
|
|
Phi4MultimodalAudioNemoConvSubsampling,
|
|
Phi4MultimodalAudioRelativeAttentionBias,
|
|
adaptive_enc_mask,
|
|
unfold_tensor,
|
|
)
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.distributed import (
|
|
divide,
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
)
|
|
from vllm.model_executor.layers.activation import MulAndSilu, get_act_fn
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
NestedTensors,
|
|
)
|
|
from vllm.multimodal.parse import (
|
|
AudioProcessorItems,
|
|
ImageEmbeddingItems,
|
|
ImageProcessorItems,
|
|
ImageSize,
|
|
MultiModalDataItems,
|
|
MultiModalDataParser,
|
|
)
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .idefics2_vision_model import Idefics2VisionTransformer
|
|
from .interfaces import MultiModalEmbeddings, SupportsLoRA, SupportsMultiModal
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
)
|
|
|
|
_AUDIO_MAX_SOUNDFILE_SIZE = 241_000
|
|
|
|
|
|
def _get_padding_size(
|
|
orig_width: int, orig_height: int, target_height: int, target_width: int
|
|
):
|
|
ratio_width = target_width / orig_width
|
|
ratio_height = target_height / orig_height
|
|
|
|
if ratio_width < ratio_height:
|
|
padding_width = 0
|
|
padding_height = target_height - int(orig_height * ratio_width)
|
|
else:
|
|
padding_width = target_width - int(orig_width * ratio_height)
|
|
padding_height = 0
|
|
return padding_height, padding_width
|
|
|
|
|
|
class Phi4MMProjector(nn.Module):
|
|
def __init__(self, input_size: int, hidden_size: int):
|
|
super().__init__()
|
|
self.up = ColumnParallelLinear(input_size, hidden_size)
|
|
self.down = RowParallelLinear(hidden_size, hidden_size)
|
|
self.act = get_act_fn("gelu")
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x, _ = self.up(x)
|
|
x = self.act(x)
|
|
x, _ = self.down(x)
|
|
return x
|
|
|
|
|
|
class Phi4MMImageEmbedding(nn.Module):
|
|
"""Image embedding."""
|
|
|
|
def __init__(self, config: Phi4MultimodalConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = config.vision_config.feature_layer
|
|
self.crop_size = config.vision_config.crop_size
|
|
self.image_dim_out = config.vision_config.hidden_size
|
|
|
|
n_patches = config.vision_config.image_size // config.vision_config.patch_size
|
|
if n_patches % 2 != 0:
|
|
self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1))
|
|
n_patches += 1
|
|
self.num_img_tokens = (n_patches // 2) ** 2
|
|
|
|
num_hidden_layers = (
|
|
config.vision_config.num_hidden_layers + self.layer_idx + 1
|
|
if self.layer_idx < 0
|
|
else self.layer_idx + 1
|
|
)
|
|
self.img_processor = Idefics2VisionTransformer(
|
|
config.vision_config,
|
|
require_post_norm=False,
|
|
num_hidden_layers_override=num_hidden_layers,
|
|
)
|
|
self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2)
|
|
self.img_projection = Phi4MMProjector(self.image_dim_out, config.hidden_size)
|
|
self.global_img_feature_extensor = nn.Parameter(
|
|
torch.zeros([1, 1, self.image_dim_out])
|
|
)
|
|
self.sub_img_feature_extensor = nn.Parameter(
|
|
torch.zeros([1, 1, 1, self.image_dim_out])
|
|
)
|
|
|
|
def get_img_features(
|
|
self,
|
|
img_embeds: torch.FloatTensor,
|
|
attention_mask: torch.Tensor | None = None,
|
|
) -> torch.FloatTensor:
|
|
img_feature = self.img_processor(
|
|
img_embeds, patch_attention_mask=attention_mask
|
|
)
|
|
|
|
patch_feature = img_feature
|
|
# reshape to 2D tensor
|
|
width = int(math.sqrt(patch_feature.size(1)))
|
|
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1))
|
|
# convert to NCHW
|
|
patch_feature = patch_feature.permute(0, 3, 1, 2)
|
|
if getattr(self, "img_processor_padding", None) is not None:
|
|
patch_feature = self.img_processor_padding(patch_feature)
|
|
patch_feature = self.image_token_compression(patch_feature)
|
|
# convert to NHWC
|
|
patch_feature = patch_feature.permute(0, 2, 3, 1)
|
|
patch_feature = patch_feature.view(
|
|
-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1)
|
|
)
|
|
return patch_feature
|
|
|
|
def forward(
|
|
self,
|
|
image_pixel_values: torch.FloatTensor,
|
|
image_sizes: torch.Tensor | None = None,
|
|
image_attention_mask: torch.Tensor | None = None,
|
|
) -> torch.FloatTensor:
|
|
image_pixel_values = image_pixel_values.to(
|
|
self.img_processor.embeddings.patch_embedding.weight.dtype
|
|
)
|
|
|
|
target_device = self.img_projection.up.bias.device
|
|
target_dtype = self.img_projection.up.bias.dtype
|
|
|
|
batch_size = image_pixel_values.shape[0]
|
|
|
|
img_features = self.get_img_features(
|
|
image_pixel_values.flatten(0, 1),
|
|
attention_mask=image_attention_mask.flatten(0, 1).to(
|
|
dtype=bool, device=target_device
|
|
),
|
|
)
|
|
base_feat_size = int(np.sqrt(img_features.shape[1]))
|
|
img_features = img_features.view(
|
|
batch_size, -1, base_feat_size**2, self.image_dim_out
|
|
)
|
|
image_sizes = image_sizes.view(-1, 2)
|
|
|
|
output_imgs = []
|
|
for idx in range(batch_size):
|
|
height, width = image_sizes[idx]
|
|
height_ratio = height // self.crop_size
|
|
width_ratio = width // self.crop_size
|
|
area_ratio = height_ratio * width_ratio
|
|
|
|
global_img = img_features[idx, :1]
|
|
global_img = global_img.reshape(
|
|
1, base_feat_size, base_feat_size, self.image_dim_out
|
|
).contiguous()
|
|
temporary_extensor = self.sub_img_feature_extensor.repeat(
|
|
1, base_feat_size, 1, 1
|
|
)
|
|
global_img = torch.cat([global_img, temporary_extensor], dim=2).reshape(
|
|
1, -1, self.image_dim_out
|
|
)
|
|
|
|
sub_img = img_features[idx, 1:]
|
|
sub_img = sub_img[:area_ratio]
|
|
sub_img = (
|
|
sub_img.reshape(
|
|
height_ratio,
|
|
width_ratio,
|
|
base_feat_size,
|
|
base_feat_size,
|
|
self.image_dim_out,
|
|
)
|
|
.transpose(1, 2)
|
|
.reshape(
|
|
1,
|
|
height_ratio * base_feat_size,
|
|
width_ratio * base_feat_size,
|
|
self.image_dim_out,
|
|
)
|
|
.contiguous()
|
|
)
|
|
|
|
if image_attention_mask is not None:
|
|
reshaped_image_attention_mask = (
|
|
image_attention_mask[idx, 1 : area_ratio + 1, 0::2, 0::2]
|
|
.reshape(height_ratio, width_ratio, base_feat_size, base_feat_size)
|
|
.transpose(1, 2)
|
|
.reshape(
|
|
1, height_ratio * base_feat_size, width_ratio * base_feat_size
|
|
)
|
|
)
|
|
useful_height = int(reshaped_image_attention_mask[0, :, 0].sum().item())
|
|
useful_width = int(reshaped_image_attention_mask[0, 0, :].sum().item())
|
|
sub_img = sub_img[:, :useful_height, :useful_width]
|
|
temporary_extensor = self.sub_img_feature_extensor.repeat(
|
|
1, useful_height, 1, 1
|
|
)
|
|
else:
|
|
temporary_extensor = self.sub_img_feature_extensor.repeat(
|
|
1, height_ratio * base_feat_size, 1, 1
|
|
)
|
|
|
|
sub_img = torch.cat([sub_img, temporary_extensor], dim=2).reshape(
|
|
1, -1, self.image_dim_out
|
|
)
|
|
|
|
# Merge global and sub
|
|
output_imgs.append(
|
|
torch.cat(
|
|
[sub_img, self.global_img_feature_extensor, global_img], dim=1
|
|
)
|
|
)
|
|
|
|
img_set_tensor = []
|
|
for output_img in output_imgs:
|
|
output_img = output_img.to(device=target_device, dtype=target_dtype)
|
|
img_feature_proj = self.img_projection(output_img)
|
|
img_set_tensor.append(img_feature_proj.flatten(0, 1))
|
|
|
|
return img_set_tensor
|
|
|
|
|
|
class Phi4MultimodalAudioMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Phi4MultimodalAudioConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.layer_norm = nn.LayerNorm(config.hidden_size)
|
|
self.act_fn = MulAndSilu()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
config.hidden_size,
|
|
[config.intermediate_size] * 2,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
config.intermediate_size,
|
|
config.hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
hidden_states, _ = self.gate_up_proj(hidden_states)
|
|
hidden_states = self.act_fn(hidden_states)
|
|
hidden_states, _ = self.down_proj(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Phi4MultimodalAudioAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Phi4MultimodalAudioConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.total_num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.total_num_heads
|
|
if self.head_dim * self.total_num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
"embed_dim must be divisible by num_heads "
|
|
f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=self.embed_dim,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.total_num_heads,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
input_size=self.embed_dim,
|
|
output_size=self.embed_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.out_proj",
|
|
)
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.tp_rank = get_tensor_model_parallel_rank()
|
|
self.num_heads = divide(self.total_num_heads, self.tp_size)
|
|
|
|
def split_attn_mask(self, attention_mask: torch.Tensor) -> torch.Tensor:
|
|
start_idx = self.num_heads * self.tp_rank
|
|
end_idx = self.num_heads * (self.tp_rank + 1)
|
|
return attention_mask[:, start_idx:end_idx]
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv_states, _ = self.qkv_proj(hidden_states)
|
|
query, key, value = qkv_states.chunk(3, dim=-1)
|
|
|
|
bsz, seq_len, _ = query.size()
|
|
query = query.view(bsz, seq_len, self.num_heads, self.head_dim)
|
|
key = key.view(bsz, seq_len, self.num_heads, self.head_dim)
|
|
value = value.view(bsz, seq_len, self.num_heads, self.head_dim)
|
|
query, key, value = (x.transpose(1, 2) for x in (query, key, value))
|
|
|
|
attention_mask = self.split_attn_mask(attention_mask)
|
|
out = F.scaled_dot_product_attention(
|
|
query,
|
|
key,
|
|
value,
|
|
scale=self.scale,
|
|
attn_mask=attention_mask,
|
|
)
|
|
out = out.transpose(1, 2).reshape(bsz, seq_len, -1)
|
|
|
|
attn_output, _ = self.o_proj(out)
|
|
|
|
return attn_output
|
|
|
|
|
|
class Phi4MultimodalAudioConformerEncoderLayer(nn.Module):
|
|
def __init__(self, config: Phi4MultimodalAudioConfig):
|
|
super().__init__()
|
|
|
|
self.feed_forward_in = Phi4MultimodalAudioMLP(config)
|
|
self.self_attn = Phi4MultimodalAudioAttention(config)
|
|
self.conv = Phi4MultimodalAudioConvModule(config)
|
|
self.feed_forward_out = Phi4MultimodalAudioMLP(config)
|
|
self.layer_norm_att = nn.LayerNorm(config.hidden_size)
|
|
self.layer_norm = nn.LayerNorm(config.hidden_size)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
residual = hidden_states + 0.5 * self.feed_forward_in(hidden_states)
|
|
hidden_states = self.layer_norm_att(residual)
|
|
|
|
hidden_states = residual + self.self_attn(hidden_states, attention_mask)
|
|
hidden_states = hidden_states + self.conv(hidden_states)
|
|
hidden_states = hidden_states + 0.5 * self.feed_forward_out(hidden_states)
|
|
|
|
out = self.layer_norm(hidden_states)
|
|
|
|
return out
|
|
|
|
|
|
class Phi4MMAudioMeanVarianceNormLayer(nn.Module):
|
|
"""Mean/variance normalization layer.
|
|
|
|
Will subtract mean and multiply input by inverted standard deviation.
|
|
Typically used as a very first layer in a model.
|
|
|
|
Args:
|
|
config: [Phi4MultimodalAudioConfig](https://huggingface.co/docs/transformers/model_doc/phi4_multimodal#transformers.Phi4MultimodalAudioConfig)
|
|
object containing model parameters.
|
|
"""
|
|
|
|
def __init__(self, config: Phi4MultimodalAudioConfig):
|
|
super().__init__()
|
|
self.global_mean = nn.Parameter(torch.zeros(config.input_size))
|
|
self.global_invstd = nn.Parameter(torch.ones(config.input_size))
|
|
|
|
def forward(self, input_: torch.Tensor) -> torch.Tensor:
|
|
"""MeanVarianceNormLayer Forward
|
|
|
|
Args:
|
|
input_: torch.Tensor
|
|
input tensor.
|
|
"""
|
|
return (input_ - self.global_mean) * self.global_invstd
|
|
|
|
|
|
class Phi4MultimodalAudioModel(nn.Module):
|
|
def __init__(self, config: Phi4MultimodalAudioConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.encoder_embedding = Phi4MMAudioMeanVarianceNormLayer(config)
|
|
self.embed = Phi4MultimodalAudioNemoConvSubsampling(config)
|
|
self.relative_attention_bias_layer = Phi4MultimodalAudioRelativeAttentionBias(
|
|
config
|
|
)
|
|
self.encoders = nn.ModuleList(
|
|
[
|
|
Phi4MultimodalAudioConformerEncoderLayer(config)
|
|
for _ in range(config.num_blocks)
|
|
]
|
|
)
|
|
|
|
def _streaming_mask(
|
|
self,
|
|
seq_len: int,
|
|
batch_size: int,
|
|
chunk_size: int,
|
|
left_chunk: int,
|
|
):
|
|
# Create mask matrix for streaming
|
|
# S stores start index. if chunksize is 18, s is [0,18,36,....]
|
|
chunk_start_idx = np.arange(0, seq_len, chunk_size)
|
|
|
|
enc_streaming_mask = (
|
|
adaptive_enc_mask(seq_len, chunk_start_idx, left_window=left_chunk)
|
|
.unsqueeze(0)
|
|
.expand([batch_size, -1, -1])
|
|
)
|
|
return enc_streaming_mask
|
|
|
|
def forward_embeddings(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
masks: torch.Tensor,
|
|
):
|
|
"""Forwarding the inputs through the top embedding layers"""
|
|
seq_len = math.ceil(hidden_states.shape[1] / self.config.time_reduction)
|
|
if seq_len <= 0:
|
|
raise ValueError(
|
|
f"Sequence length after time reduction is invalid: {seq_len}."
|
|
"Your input feature is too short."
|
|
)
|
|
|
|
batch_size = hidden_states.shape[0]
|
|
|
|
enc_streaming_mask = self._streaming_mask(
|
|
seq_len, batch_size, self.config.chunk_size, self.config.left_chunk
|
|
)
|
|
enc_streaming_mask = enc_streaming_mask.to(hidden_states.device)
|
|
|
|
hidden_states, masks = self.embed(hidden_states, masks)
|
|
|
|
streaming_mask = enc_streaming_mask
|
|
if streaming_mask is not None and masks is not None:
|
|
hs_mask = masks & streaming_mask
|
|
elif masks is not None:
|
|
hs_mask = masks
|
|
else:
|
|
hs_mask = streaming_mask
|
|
|
|
return hidden_states, hs_mask, masks
|
|
|
|
def calculate_hs_mask(
|
|
self, hidden_states: torch.Tensor, device: torch.device, mask: torch.Tensor
|
|
):
|
|
max_audio_length = hidden_states.shape[1]
|
|
batch_size = hidden_states.shape[0]
|
|
enc_streaming_mask = self._streaming_mask(
|
|
max_audio_length, batch_size, self.config.chunk_size, self.config.left_chunk
|
|
)
|
|
enc_streaming_mask = enc_streaming_mask.to(device)
|
|
if mask is None:
|
|
return enc_streaming_mask
|
|
|
|
feature_lens = mask.sum(1)
|
|
padding_length = feature_lens
|
|
pad_mask = torch.arange(0, max_audio_length, device=device).expand(
|
|
padding_length.size(0), -1
|
|
) < padding_length.unsqueeze(1)
|
|
pad_mask = pad_mask.unsqueeze(1)
|
|
pad_mask = pad_mask & enc_streaming_mask
|
|
return pad_mask
|
|
|
|
def forward(self, hidden_states: torch.Tensor, mask: torch.Tensor | None = None):
|
|
hidden_states = self.encoder_embedding(hidden_states)
|
|
hidden_states, hs_mask, mask = self.forward_embeddings(hidden_states, mask)
|
|
|
|
unfolded = False
|
|
bs, seq_len, _ = hidden_states.shape
|
|
max_seq_len = 500 # maximum position for absolute positional encoding
|
|
if seq_len > max_seq_len:
|
|
# audio sequence is longer than max_seq_len,
|
|
# unfold it into chunks of max_seq_len
|
|
unfolded = True
|
|
# the unfold op will drop residual frames,
|
|
# pad it to the multiple of max_seq_len
|
|
if seq_len % max_seq_len > 0:
|
|
chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
|
|
else:
|
|
chunk_pad_size = 0
|
|
if chunk_pad_size > 0:
|
|
hidden_states_pad = F.pad(
|
|
hidden_states, (0, 0, 0, chunk_pad_size), "constant", 0
|
|
)
|
|
hidden_states = hidden_states_pad.to(hidden_states.device)
|
|
|
|
hidden_states = unfold_tensor(hidden_states, max_seq_len)
|
|
masks_unfold = None
|
|
if mask is not None:
|
|
# revise hs_mask here because the previous calculated hs_mask
|
|
# did not consider extra pad
|
|
subsampled_pad_mask = mask.squeeze(1) # [bz, subsampled_unmask_seq_len]
|
|
extra_padded_subsamlped_pad_mask = F.pad(
|
|
subsampled_pad_mask, (0, chunk_pad_size), "constant", False
|
|
) # extra padding to the pad mask
|
|
extra_padded_subsamlped_pad_mask = (
|
|
extra_padded_subsamlped_pad_mask.unsqueeze(-1).float()
|
|
)
|
|
masks_unfold = unfold_tensor(
|
|
extra_padded_subsamlped_pad_mask, max_seq_len
|
|
) # unfold the pad mask like we did to the input tensor
|
|
masks_unfold = masks_unfold.squeeze(
|
|
-1
|
|
).bool() # unfold op does not support bool tensor
|
|
hs_mask = self.calculate_hs_mask(
|
|
hidden_states, hidden_states.device, masks_unfold
|
|
) # calculate hs_mask based on the unfolded pad mask
|
|
|
|
relative_attention_bias = self.relative_attention_bias_layer(hidden_states)
|
|
attention_mask = hs_mask.unsqueeze(1) + relative_attention_bias
|
|
|
|
for layer in self.encoders:
|
|
hidden_states = layer(hidden_states, attention_mask)
|
|
|
|
if unfolded:
|
|
embed_dim = hidden_states.shape[-1]
|
|
hidden_states = hidden_states.reshape(bs, -1, embed_dim)
|
|
# if we ever padded before unfolding, we need to remove the padding
|
|
if chunk_pad_size > 0:
|
|
hidden_states = hidden_states[:, :-chunk_pad_size, :]
|
|
|
|
return hidden_states
|
|
|
|
|
|
class Phi4MMAudioEmbedding(nn.Module):
|
|
def __init__(self, config: Phi4MultimodalConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = config.audio_config.feature_layer
|
|
|
|
self.encoder = Phi4MultimodalAudioModel(config.audio_config)
|
|
|
|
audio_config = config.audio_config
|
|
proj_input_size = audio_config.hidden_size * audio_config.downsample_rate
|
|
self.vision_speech_projection = Phi4MMProjector(
|
|
proj_input_size, config.hidden_size
|
|
)
|
|
self.speech_projection = Phi4MMProjector(proj_input_size, config.hidden_size)
|
|
|
|
def get_projection(
|
|
self,
|
|
audio_projection_mode: Literal["speech", "vision"],
|
|
) -> Phi4MMProjector:
|
|
if audio_projection_mode == "speech":
|
|
return self.speech_projection
|
|
elif audio_projection_mode == "vision":
|
|
return self.vision_speech_projection
|
|
|
|
def forward(
|
|
self,
|
|
audio_input_features: torch.FloatTensor,
|
|
audio_embed_sizes=None,
|
|
audio_attention_mask=None,
|
|
audio_projection_mode="speech",
|
|
) -> torch.FloatTensor:
|
|
audio_projection = self.get_projection(audio_projection_mode)
|
|
|
|
target_device = audio_projection.up.bias.device
|
|
target_dtype = audio_projection.up.bias.dtype
|
|
|
|
audio_input_features = audio_input_features.to(
|
|
device=target_device, dtype=target_dtype
|
|
)
|
|
|
|
audio_encoder_hidden_states = self.encoder(
|
|
audio_input_features, audio_attention_mask
|
|
)
|
|
audio_embeds = audio_projection(audio_encoder_hidden_states)
|
|
|
|
return audio_embeds.flatten(0, 1)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class Phi4MMImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- p: Number of patches (1 + num_patches)
|
|
- c: Number of channels (3)
|
|
- h: Height of each image patch
|
|
- w: Width of each image patch
|
|
- nc: Number of crops
|
|
- H_mask: Height of attention mask
|
|
- W_mask: Width of attention mask
|
|
"""
|
|
|
|
type: Literal["pixel_values"]
|
|
|
|
pixel_values: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape(
|
|
"bn", "p", 3, "h", "w", dynamic_dims={"p"}
|
|
), # may be different per batch and image
|
|
]
|
|
|
|
image_sizes: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("bn", 2), # (height, width)
|
|
]
|
|
|
|
num_img_tokens: Annotated[
|
|
list[int],
|
|
TensorShape("bn"),
|
|
]
|
|
|
|
image_attention_mask: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("bn", "nc", 32, 32), # H_mask, W_mask
|
|
]
|
|
|
|
|
|
class Phi4MMImageEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- f: Image feature size
|
|
- h: Hidden size (must match language model backbone)
|
|
"""
|
|
|
|
type: Literal["image_embeds"]
|
|
|
|
data: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("bn", "f", "h"),
|
|
]
|
|
|
|
|
|
class Phi4MMAudioFeatureInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of audios
|
|
- f: Number of Mel filterbank bins (80)
|
|
- t: Time frames (M)
|
|
"""
|
|
|
|
type: Literal["audio_features"]
|
|
|
|
audio_features: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("bn", "t", 80, dynamic_dims={"t"}),
|
|
]
|
|
|
|
|
|
class Phi4MMAudioEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- b: Batch size
|
|
- n: Number of audios
|
|
- f: Audio feature size
|
|
- h: Hidden size (must match language model backbone)
|
|
"""
|
|
|
|
type: Literal["audio_embeds"]
|
|
|
|
data: Annotated[
|
|
NestedTensors,
|
|
TensorShape("b", "n", "f", "h"),
|
|
]
|
|
|
|
|
|
Phi4MMImageInput: TypeAlias = Phi4MMImagePixelInputs | Phi4MMImageEmbeddingInputs
|
|
Phi4MMAudioInputs: TypeAlias = Phi4MMAudioFeatureInputs | Phi4MMAudioEmbeddingInputs
|
|
|
|
|
|
def cat_with_pad(tensors, dim, padding_value=0):
|
|
"""
|
|
cat along dim, while pad to max for all other dims
|
|
"""
|
|
ndim = tensors[0].dim()
|
|
assert all(t.dim() == ndim for t in tensors[1:]), (
|
|
"All tensors must have the same number of dimensions"
|
|
)
|
|
|
|
out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
|
|
out_size[dim] = sum(t.shape[dim] for t in tensors)
|
|
output = tensors[0].new_full(out_size, padding_value)
|
|
|
|
index = 0
|
|
for t in tensors:
|
|
# Create a slice list where every dimension except dim is full slice
|
|
slices = [slice(0, t.shape[d]) for d in range(ndim)]
|
|
# Update only the concat dimension slice
|
|
slices[dim] = slice(index, index + t.shape[dim])
|
|
|
|
output[slices] = t
|
|
index += t.shape[dim]
|
|
|
|
return output
|
|
|
|
|
|
class Phi4MMProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self) -> Phi4MultimodalConfig:
|
|
return self.ctx.get_hf_config(Phi4MultimodalConfig)
|
|
|
|
def get_hf_processor(self, **kwargs: object) -> Phi4MMProcessor:
|
|
return self.ctx.get_hf_processor(Phi4MMProcessor, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs: object) -> Phi4MultimodalFeatureExtractor:
|
|
return self.get_hf_processor(**kwargs).audio_processor
|
|
|
|
def get_image_processor(
|
|
self,
|
|
processor: Phi4MMProcessor | None = None,
|
|
) -> Phi4MultimodalImageProcessorFast:
|
|
if processor is None:
|
|
processor = self.get_hf_processor()
|
|
return processor.image_processor
|
|
|
|
def get_dynamic_hd(
|
|
self,
|
|
processor: Phi4MMProcessor | None = None,
|
|
) -> int:
|
|
return self.get_image_processor(processor).dynamic_hd
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"audio": None, "image": None}
|
|
|
|
def _find_target_aspect_ratio(
|
|
self,
|
|
orig_width: int,
|
|
orig_height: int,
|
|
image_size: int,
|
|
max_num: int,
|
|
min_num: int,
|
|
):
|
|
w_crop_num = math.ceil(orig_width / float(image_size))
|
|
h_crop_num = math.ceil(orig_height / float(image_size))
|
|
if w_crop_num * h_crop_num > max_num:
|
|
aspect_ratio = orig_width / orig_height
|
|
|
|
# calculate the existing image aspect ratio
|
|
target_ratios = set(
|
|
(i, j)
|
|
for i in range(1, max_num + 1)
|
|
for j in range(1, max_num + 1)
|
|
if i * j <= max_num and i * j >= min_num
|
|
)
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
|
|
|
# find the closest aspect ratio to the target
|
|
image_processor = self.get_image_processor()
|
|
target_aspect_ratio = image_processor.find_closest_aspect_ratio(
|
|
aspect_ratio,
|
|
target_ratios,
|
|
orig_width,
|
|
orig_height,
|
|
image_size,
|
|
)
|
|
|
|
# calculate the target width and height
|
|
target_width = image_size * target_aspect_ratio[0]
|
|
target_height = image_size * target_aspect_ratio[1]
|
|
else:
|
|
target_width = image_size * w_crop_num
|
|
target_height = image_size * h_crop_num
|
|
target_aspect_ratio = (w_crop_num, h_crop_num)
|
|
return target_aspect_ratio, target_height, target_width
|
|
|
|
def _compute_num_image_tokens(
|
|
self,
|
|
orig_width: int,
|
|
orig_height: int,
|
|
dynamic_hd_size: int,
|
|
vit_image_size: int,
|
|
vit_patch_size: int,
|
|
token_compression_factor: int = 2,
|
|
):
|
|
"""
|
|
compute the number of tokens an image is expected to take up considering
|
|
the image encoder architecture and exclude output features containing
|
|
only padding pixels
|
|
|
|
for siglip, vit_image_size=448, vit_patch_size=14, so output will be
|
|
32x32 feature map
|
|
NOTE right now, Phi4MM uses hard-coded token_compression_factor=2
|
|
"""
|
|
assert vit_image_size % vit_patch_size == 0, (
|
|
"vit_image_size must be divisible by vit_patch_size"
|
|
)
|
|
assert vit_image_size // vit_patch_size % token_compression_factor == 0, (
|
|
"vit_image_size // vit_patch_size must be divisible by "
|
|
"token_compression_factor"
|
|
)
|
|
|
|
target_aspect_ratio, target_height, target_width = (
|
|
self._find_target_aspect_ratio(
|
|
orig_width, orig_height, vit_image_size, dynamic_hd_size, min_num=1
|
|
)
|
|
)
|
|
assert target_aspect_ratio[0] * vit_image_size == target_width, (
|
|
f"{target_aspect_ratio[0]} * {vit_image_size} != {target_width}"
|
|
)
|
|
assert target_aspect_ratio[1] * vit_image_size == target_height, (
|
|
f"{target_aspect_ratio[1]} * {vit_image_size} != {target_height}"
|
|
)
|
|
assert (
|
|
target_height % vit_image_size == 0 and target_width % vit_image_size == 0
|
|
)
|
|
|
|
padding_height, padding_width = _get_padding_size(
|
|
orig_width, orig_height, target_height, target_width
|
|
)
|
|
assert padding_width == 0 or padding_height == 0, (
|
|
"padding_width or padding_height must be 0"
|
|
)
|
|
|
|
target_feat_width = target_width // vit_patch_size
|
|
target_feat_height = target_height // vit_patch_size
|
|
if padding_width >= vit_patch_size:
|
|
assert padding_height == 0, "padding_height not 0"
|
|
non_pad_feat_width = target_feat_width - math.floor(
|
|
padding_width / vit_patch_size
|
|
)
|
|
non_pad_feat_height = target_feat_height
|
|
elif padding_height >= vit_patch_size:
|
|
assert padding_width == 0, "padding_width not 0"
|
|
non_pad_feat_height = target_feat_height - math.floor(
|
|
padding_height / vit_patch_size
|
|
)
|
|
non_pad_feat_width = target_feat_width
|
|
else:
|
|
# small padding shorter than a vit patch
|
|
non_pad_feat_width = target_feat_width
|
|
non_pad_feat_height = target_feat_height
|
|
|
|
feat_width = non_pad_feat_width // token_compression_factor
|
|
feat_height = non_pad_feat_height // token_compression_factor
|
|
# NOTE it's possible that the non-padding feature is not divisible
|
|
if non_pad_feat_width % token_compression_factor != 0:
|
|
feat_width += 1
|
|
if non_pad_feat_height % token_compression_factor != 0:
|
|
feat_height += 1
|
|
num_hd_patch_tokens = feat_width * feat_height
|
|
num_hd_newline_tokens = feat_height
|
|
vit_feature_size = vit_image_size // vit_patch_size
|
|
num_global_image_tokens = (vit_feature_size // token_compression_factor) ** 2
|
|
num_sep_tokens = 1
|
|
num_global_image_newline_tokens = vit_feature_size // token_compression_factor
|
|
|
|
return (
|
|
num_global_image_tokens
|
|
+ num_sep_tokens
|
|
+ num_hd_patch_tokens
|
|
+ num_hd_newline_tokens
|
|
+ num_global_image_newline_tokens
|
|
)
|
|
|
|
def get_num_image_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
processor: Phi4MMProcessor | None = None,
|
|
) -> int:
|
|
hf_config = self.get_hf_config()
|
|
vision_config = hf_config.vision_config
|
|
vit_image_size = vision_config.image_size
|
|
vit_patch_size = vision_config.patch_size
|
|
|
|
dynamic_hd_size = self.get_dynamic_hd(processor=processor)
|
|
|
|
# we use default `token_compression_factor=2`,
|
|
# since it's not in HF vision config.
|
|
image_num_tokens = self._compute_num_image_tokens(
|
|
image_width,
|
|
image_height,
|
|
dynamic_hd_size=dynamic_hd_size,
|
|
vit_image_size=vit_image_size,
|
|
vit_patch_size=vit_patch_size,
|
|
)
|
|
|
|
return image_num_tokens
|
|
|
|
def get_image_size_with_most_features(
|
|
self,
|
|
processor: Phi4MMProcessor | None = None,
|
|
) -> ImageSize:
|
|
vit_image_size = self.get_hf_config().vision_config.image_size
|
|
|
|
max_side = vit_image_size * self.get_dynamic_hd(processor=processor)
|
|
return ImageSize(height=max_side, width=vit_image_size)
|
|
|
|
def get_audio_num_frames(self, audio_len: int, sr: float) -> int:
|
|
"""
|
|
Compute the output size of the `extract_features` method.
|
|
|
|
Args:
|
|
audio_len (int): Length of the input waveform in samples.
|
|
sr (float): Sampling rate of the waveform, either 16000 or 8000.
|
|
|
|
Returns:
|
|
tuple (int, int): Output size as (T, D), where:
|
|
T: Number of time frames.
|
|
D: Number of Mel filterbank bins (80).
|
|
"""
|
|
|
|
# Resample to 16000 or 8000 if needed
|
|
if sr > 16000:
|
|
audio_len //= sr // 16000
|
|
elif 8000 <= sr < 16000:
|
|
# We'll resample to 16K from 8K
|
|
audio_len *= 2
|
|
elif sr < 8000:
|
|
raise RuntimeError(f"Unsupported sample rate {sr}")
|
|
|
|
# Spectrogram parameters for 16 kHz
|
|
win_length = 400 # Frame length in samples
|
|
hop_length = 160 # Frame shift in samples
|
|
|
|
# Calculate number of frames (T)
|
|
num_frames = (audio_len - win_length) // hop_length + 1
|
|
if num_frames < 1:
|
|
raise ValueError("Waveform too short for given parameters.")
|
|
|
|
# Return time frames (T)
|
|
return num_frames
|
|
|
|
def _compute_audio_embed_size(self, audio_frames: int) -> int:
|
|
"""
|
|
Compute the size of audio embeddings from the number of audio frames.
|
|
"""
|
|
# `_compute_audio_embed_size` in audio_processor use torch for
|
|
# computation, therefore we re-implement it to use pythonic
|
|
# numeric computation to avoid extra tensor conversion.
|
|
audio_processor = self.get_feature_extractor()
|
|
audio_compression_rate = audio_processor.audio_compression_rate
|
|
audio_downsample_rate = audio_processor.audio_downsample_rate
|
|
|
|
integer = audio_frames // audio_compression_rate
|
|
remainder = audio_frames % audio_compression_rate
|
|
result = integer + int(remainder > 0)
|
|
|
|
integer = result // audio_downsample_rate
|
|
remainder = result % audio_downsample_rate
|
|
result = integer + int(remainder > 0) # qformer compression
|
|
|
|
return result
|
|
|
|
|
|
class Phi4MMDummyInputsBuilder(BaseDummyInputsBuilder[Phi4MMProcessingInfo]):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
tokenizer = self.info.get_tokenizer()
|
|
image_tokens: str = tokenizer.image_token * num_images
|
|
audio_tokens: str = tokenizer.audio_token * num_audios
|
|
|
|
return image_tokens + audio_tokens
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
target_width, target_height = self.info.get_image_size_with_most_features()
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
audio_overrides = mm_options.get("audio") if mm_options else None
|
|
|
|
mm_data = {
|
|
"image": self._get_dummy_images(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
),
|
|
"audio": self._get_dummy_audios(
|
|
length=_AUDIO_MAX_SOUNDFILE_SIZE,
|
|
num_audios=num_audios,
|
|
overrides=audio_overrides,
|
|
),
|
|
}
|
|
|
|
return mm_data
|
|
|
|
|
|
class Phi4MMMultiModalProcessor(BaseMultiModalProcessor[Phi4MMProcessingInfo]):
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
if not mm_data:
|
|
prompt_ids = self.info.get_tokenizer().encode(prompt)
|
|
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
|
|
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
|
|
|
|
audio_data = mm_data.pop("audios", [])
|
|
if audio_data:
|
|
mm_data["audio"] = audio_data
|
|
|
|
processed_outputs = super()._call_hf_processor(
|
|
prompt, mm_data, mm_kwargs, tok_kwargs
|
|
)
|
|
|
|
if "image_pixel_values" in processed_outputs:
|
|
num_img_tokens = [
|
|
self.info.get_num_image_tokens(
|
|
image_width=img_size[0], image_height=img_size[1]
|
|
)
|
|
for img_size in processed_outputs["image_sizes"]
|
|
]
|
|
processed_outputs["num_img_tokens"] = num_img_tokens
|
|
|
|
if audio_data:
|
|
audio_features = processed_outputs["audio_input_features"]
|
|
sr = self.info.get_feature_extractor(**mm_kwargs).sampling_rate
|
|
feature_sizes = [
|
|
self.info.get_audio_num_frames(len(audio), sr) for audio in audio_data
|
|
]
|
|
processed_outputs["audio_input_features"] = [
|
|
audio_features[idx, :size] for idx, size in enumerate(feature_sizes)
|
|
]
|
|
|
|
return processed_outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
image_pixel_values=MultiModalFieldConfig.batched("image"),
|
|
image_attention_mask=MultiModalFieldConfig.batched("image"),
|
|
image_sizes=MultiModalFieldConfig.batched("image"),
|
|
num_img_tokens=MultiModalFieldConfig.batched("image"),
|
|
audio_input_features=MultiModalFieldConfig.batched("audio"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, Any],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
tokenizer = self.info.get_tokenizer()
|
|
image_token_id: int = tokenizer.vocab[tokenizer.image_token]
|
|
audio_token_id: int = tokenizer.vocab[tokenizer.audio_token]
|
|
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
audio_processor = self.info.get_feature_extractor(**hf_processor_mm_kwargs)
|
|
|
|
def get_image_replacement_phi4mm(item_idx: int):
|
|
images = mm_items.get_items(
|
|
"image", (ImageEmbeddingItems, ImageProcessorItems)
|
|
)
|
|
|
|
if isinstance(images, ImageEmbeddingItems):
|
|
num_image_tokens = images.get_feature_size(item_idx)
|
|
else:
|
|
image_size = images.get_image_size(item_idx)
|
|
num_image_tokens = self.info.get_num_image_tokens(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
processor=hf_processor,
|
|
)
|
|
|
|
return [image_token_id] * num_image_tokens
|
|
|
|
def get_audio_replacement_phi4mm(item_idx: int):
|
|
audios = mm_items.get_items("audio", AudioProcessorItems)
|
|
# TODO(Isotr0py): support embedding inputs
|
|
audio_len = audios.get_audio_length(item_idx)
|
|
audio_frames = self.info.get_audio_num_frames(
|
|
audio_len, audio_processor.sampling_rate
|
|
)
|
|
audio_embed_size = self.info._compute_audio_embed_size(audio_frames)
|
|
|
|
return [audio_token_id] * audio_embed_size
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="audio",
|
|
target=[audio_token_id],
|
|
replacement=get_audio_replacement_phi4mm,
|
|
),
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=[image_token_id],
|
|
replacement=get_image_replacement_phi4mm,
|
|
),
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Phi4MMMultiModalProcessor,
|
|
info=Phi4MMProcessingInfo,
|
|
dummy_inputs=Phi4MMDummyInputsBuilder,
|
|
)
|
|
class Phi4MultimodalForCausalLM(nn.Module, SupportsLoRA, SupportsMultiModal):
|
|
"""
|
|
Implements the Phi-4-multimodal-instruct model in vLLM.
|
|
"""
|
|
|
|
merge_by_field_config = True
|
|
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"qkv_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_up_proj",
|
|
],
|
|
}
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
# Multimodal embedding
|
|
"model.embed_tokens_extend.": "",
|
|
# LLM backbone
|
|
"model.": "language_model.model.",
|
|
},
|
|
orig_to_new_substr={
|
|
# projection
|
|
".img_projection_": ".img_projection.",
|
|
".up_proj_for_speech.": ".speech_projection.up.",
|
|
".up_proj_for_vision_speech.": ".vision_speech_projection.up.",
|
|
".down_proj_for_speech.": ".speech_projection.down.",
|
|
".down_proj_for_vision_speech.": ".vision_speech_projection.down.",
|
|
},
|
|
)
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<|image|>"
|
|
if modality.startswith("audio"):
|
|
return "<|audio|>"
|
|
|
|
raise ValueError("Only image or audio modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
# TODO: Optionally initializes these for supporting input embeddings.
|
|
self.image_embed = Phi4MMImageEmbedding(
|
|
config,
|
|
# prefix=maybe_prefix(prefix, "image_embed"),
|
|
)
|
|
self.audio_embed = Phi4MMAudioEmbedding(
|
|
config,
|
|
# prefix=maybe_prefix(prefix, "audio_embed"),
|
|
)
|
|
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
architectures=["Phi3ForCausalLM"],
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _parse_and_validate_audio_input(
|
|
self, **kwargs: object
|
|
) -> Phi4MMAudioInputs | None:
|
|
"""
|
|
Parse and validate the audio input to the model. This handles both
|
|
audio features and audio embeddings, but only the former is used for
|
|
now.
|
|
|
|
Args:
|
|
kwargs (object): Keyword arguments.
|
|
|
|
Returns:
|
|
Optional[Phi4MMAudioInputs]: Parsed and validated audio inputs.
|
|
"""
|
|
audio_features = kwargs.pop("audio_input_features", None)
|
|
audio_embeds = kwargs.pop("audio_embeds", None)
|
|
|
|
if audio_features is None and audio_embeds is None:
|
|
return None
|
|
|
|
if audio_features is not None:
|
|
return Phi4MMAudioFeatureInputs(
|
|
type="audio_features",
|
|
audio_features=audio_features,
|
|
)
|
|
|
|
if audio_embeds is not None:
|
|
return Phi4MMAudioEmbeddingInputs(type="audio_embeds", data=audio_embeds)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _process_audio_input(
|
|
self, audio_input: Phi4MMAudioInputs, audio_projection_mode: str
|
|
) -> NestedTensors:
|
|
"""
|
|
Create the audio embeddings from the audio input, where the audio input
|
|
is pairs of audio features and audio embed lengths. The audio input is
|
|
created by `input_mapper_for_phi4mm_audio`.
|
|
|
|
Args:
|
|
audio_input (Phi4MMAudioInputs): Audio input.
|
|
|
|
Returns:
|
|
NestedTensors: Audio embeddings
|
|
"""
|
|
if audio_input["type"] == "audio_embeds":
|
|
return audio_input["data"]
|
|
|
|
audio_features = audio_input["audio_features"]
|
|
# (e.g. multiple examples) and the second dim is the multi-audio dim
|
|
# (e.g. multiple audios in the same example)
|
|
|
|
dtype = next(self.audio_embed.parameters()).dtype
|
|
audio_embeds = [
|
|
self.audio_embed(
|
|
features.unsqueeze(0).to(dtype),
|
|
audio_projection_mode=audio_projection_mode,
|
|
)
|
|
for features in audio_features
|
|
]
|
|
return audio_embeds
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> Phi4MMImagePixelInputs | None:
|
|
pixel_values = kwargs.get("image_pixel_values")
|
|
if pixel_values is None:
|
|
return None
|
|
|
|
image_sizes = kwargs.get("image_sizes")
|
|
image_attention_mask = kwargs.get("image_attention_mask")
|
|
num_img_tokens = kwargs.get("num_img_tokens")
|
|
assert (
|
|
image_sizes is not None
|
|
and image_attention_mask is not None
|
|
and num_img_tokens is not None
|
|
), "Missing image inputs"
|
|
|
|
return Phi4MMImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
image_sizes=image_sizes,
|
|
image_attention_mask=image_attention_mask,
|
|
num_img_tokens=num_img_tokens,
|
|
)
|
|
|
|
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
|
|
modalities = {}
|
|
|
|
# Preserve the order of modalities if there are multiple of them
|
|
# from the order of kwargs.
|
|
for input_key in kwargs:
|
|
if (
|
|
input_key in ("image_pixel_values", "image_embeds")
|
|
and "images" not in modalities
|
|
):
|
|
modalities["images"] = self._parse_and_validate_image_input(**kwargs)
|
|
if (
|
|
input_key in ("audio_input_features", "audio_embeds")
|
|
and "audios" not in modalities
|
|
):
|
|
modalities["audios"] = self._parse_and_validate_audio_input(**kwargs)
|
|
|
|
return modalities
|
|
|
|
def _process_image_input(
|
|
self, image_input: Phi4MMImagePixelInputs
|
|
) -> list[torch.Tensor]:
|
|
if image_input["type"] == "image_embeds":
|
|
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
|
|
else:
|
|
dtype = next(self.image_embed.parameters()).dtype
|
|
pixel_values = image_input["pixel_values"].to(dtype)
|
|
image_sizes = image_input["image_sizes"]
|
|
image_attention_mask = image_input["image_attention_mask"]
|
|
image_embeds = self.image_embed(
|
|
pixel_values, image_sizes, image_attention_mask
|
|
)
|
|
return image_embeds
|
|
|
|
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
|
|
if not modalities:
|
|
return []
|
|
|
|
# The result multimodal_embeddings is tuple of tensors, with each
|
|
# tensor corresponding to a multimodal data item (image or video).
|
|
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
|
|
|
|
# NOTE: It is important to iterate over the keys in this dictionary
|
|
# to preserve the order of the modalities.
|
|
audio_projection_mode = "speech"
|
|
for modality in modalities:
|
|
# make sure process images first
|
|
if modality == "images":
|
|
audio_projection_mode = "vision"
|
|
image_input = modalities["images"]
|
|
image_embeddings = self._process_image_input(image_input)
|
|
multimodal_embeddings += tuple(image_embeddings)
|
|
if modality == "audios":
|
|
audio_input = modalities["audios"]
|
|
audio_embeddings = self._process_audio_input(
|
|
audio_input, audio_projection_mode=audio_projection_mode
|
|
)
|
|
multimodal_embeddings += tuple(audio_embeddings)
|
|
|
|
return multimodal_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model(
|
|
input_ids,
|
|
positions,
|
|
intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="language_model.",
|
|
connector=[
|
|
"img_projection",
|
|
"vision_speech_projection",
|
|
"speech_projection",
|
|
],
|
|
tower_model=["image_embed", "audio_embed"],
|
|
)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|