vllm/vllm/outputs.py
Cyrus Leung 0c492b7824
[Deprecation] Remove fallbacks for Embeddings API (#18795)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-05-28 15:09:04 +08:00

512 lines
20 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import time
from collections.abc import MutableSequence
from collections.abc import Sequence as GenericSequence
from dataclasses import dataclass
from typing import Any, Generic, Optional, Union
import torch
from typing_extensions import TypeVar
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.multimodal.inputs import MultiModalPlaceholderDict
from vllm.sampling_params import RequestOutputKind
from vllm.sequence import (PromptLogprobs, RequestMetrics, SampleLogprobs,
SequenceGroup, SequenceGroupBase, SequenceStatus)
logger = init_logger(__name__)
@dataclass
class CompletionOutput:
"""The output data of one completion output of a request.
Args:
index: The index of the output in the request.
text: The generated output text.
token_ids: The token IDs of the generated output text.
cumulative_logprob: The cumulative log probability of the generated
output text.
logprobs: The log probabilities of the top probability words at each
position if the logprobs are requested.
finish_reason: The reason why the sequence is finished.
stop_reason: The stop string or token id that caused the completion
to stop, None if the completion finished for some other reason
including encountering the EOS token.
lora_request: The LoRA request that was used to generate the output.
"""
index: int
text: str
token_ids: GenericSequence[int]
cumulative_logprob: Optional[float]
logprobs: Optional[SampleLogprobs]
finish_reason: Optional[str] = None
stop_reason: Union[int, str, None] = None
lora_request: Optional[LoRARequest] = None
def finished(self) -> bool:
return self.finish_reason is not None
def __repr__(self) -> str:
return (f"CompletionOutput(index={self.index}, "
f"text={self.text!r}, "
f"token_ids={self.token_ids}, "
f"cumulative_logprob={self.cumulative_logprob}, "
f"logprobs={self.logprobs}, "
f"finish_reason={self.finish_reason}, "
f"stop_reason={self.stop_reason})")
@dataclass
class PoolingOutput:
"""The output data of one pooling output of a request.
Args:
data: The extracted hidden states.
"""
data: torch.Tensor
def __repr__(self) -> str:
return (f"PoolingOutput(data={self.data})")
def __eq__(self, other: object) -> bool:
return (isinstance(other, self.__class__) and bool(
(self.data == other.data).all()))
class RequestOutput:
"""The output data of a completion request to the LLM.
Args:
request_id: The unique ID of the request.
prompt: The prompt string of the request.
For encoder/decoder models, this is the
decoder input prompt.
prompt_token_ids: The token IDs of the prompt.
For encoder/decoder models, this is the
decoder input prompt token ids.
prompt_logprobs: The log probabilities to return per prompt token.
outputs: The output sequences of the request.
finished: Whether the whole request is finished.
metrics: Metrics associated with the request.
lora_request: The LoRA request that was used to generate the output.
encoder_prompt: The encoder prompt string of the request.
None if decoder-only.
encoder_prompt_token_ids: The token IDs of the encoder prompt.
None if decoder-only.
num_cached_tokens: The number of tokens with prefix cache hit.
kv_transfer_params: The params for remote K/V transfer.
"""
def __init__(
self,
request_id: str,
prompt: Optional[str],
prompt_token_ids: Optional[list[int]],
prompt_logprobs: Optional[PromptLogprobs],
outputs: list[CompletionOutput],
finished: bool,
metrics: Optional[RequestMetrics] = None,
lora_request: Optional[LoRARequest] = None,
encoder_prompt: Optional[str] = None,
encoder_prompt_token_ids: Optional[list[int]] = None,
num_cached_tokens: Optional[int] = None,
*,
multi_modal_placeholders: Optional[MultiModalPlaceholderDict] = None,
kv_transfer_params: Optional[dict[str, Any]] = None,
# Forward compatibility, code that uses args added in new release can
# still run with older versions of vLLM without breaking.
**kwargs: Any,
) -> None:
if kwargs:
logger.warning_once("RequestOutput: Ignoring extra arguments: %s",
str(kwargs))
self.request_id = request_id
self.prompt = prompt
self.prompt_token_ids = prompt_token_ids
self.multi_modal_placeholders = multi_modal_placeholders or {}
self.prompt_logprobs = prompt_logprobs
self.outputs = outputs
self.finished = finished
self.metrics = metrics
self.lora_request = lora_request
self.encoder_prompt = encoder_prompt
self.encoder_prompt_token_ids = encoder_prompt_token_ids
self.num_cached_tokens = num_cached_tokens
self.kv_transfer_params = kv_transfer_params
def add(self, next_output: "RequestOutput", aggregate: bool) -> None:
"""Merge subsequent RequestOutput into this one"""
self.finished |= next_output.finished
self.kv_transfer_params = next_output.kv_transfer_params
for next_completion in next_output.outputs:
for i, completion in enumerate(self.outputs):
if completion.index == next_completion.index:
if aggregate:
# Merge outputs with same index
completion.text += next_completion.text
if not isinstance(completion.token_ids,
MutableSequence):
completion.token_ids = list(completion.token_ids)
completion.token_ids.extend(next_completion.token_ids)
if next_completion.logprobs:
assert completion.logprobs is not None
completion.logprobs.extend(
next_completion.logprobs)
completion.cumulative_logprob = (
next_completion.cumulative_logprob)
completion.finish_reason = next_completion.finish_reason
completion.stop_reason = next_completion.stop_reason
else:
# Replace the output with the new one
self.outputs[i] = next_completion
break
else:
self.outputs.append(next_completion)
@classmethod
def from_seq_group(
cls, seq_group: SequenceGroup, use_cache: bool,
seq_id_to_seq_group: dict[str, SequenceGroupBase]
) -> Optional["RequestOutput"]:
finished = seq_group.is_finished()
if seq_group.request_id in seq_id_to_seq_group:
group: SequenceGroupBase = seq_id_to_seq_group[
seq_group.request_id]
assembled_seq_group = group.maybe_assemble_group(seq_group)
if finished:
group.finish_seq(seq_group)
if assembled_seq_group is None:
return None
# clear finished seq in seq_id_to_seq_group
if len(group.to_be_finished) == 0:
for sub_request_id in list(group.seq_id_to_index.keys()):
if sub_request_id in seq_id_to_seq_group:
del seq_id_to_seq_group[sub_request_id]
return cls.from_seq_group(assembled_seq_group, use_cache,
seq_id_to_seq_group)
sampling_params = seq_group.sampling_params
if sampling_params is None:
raise ValueError(
"Sampling parameters are missing for a CompletionRequest.")
if sampling_params.output_kind == RequestOutputKind.FINAL_ONLY and (
not finished):
return None
# Init cache (if needed)
if use_cache and seq_group.cached_request_output is None:
seq_group.cached_request_output = RequestOutput( # type: ignore
request_id="",
prompt=None,
prompt_token_ids=[],
prompt_logprobs=None,
outputs=[],
finished=False)
top_n_seqs = seq_group.get_seqs()
# Create the outputs.
# NOTE: We need omit logprobs here explicitly because the sequence
# always has the logprobs of the sampled tokens even if the
# logprobs are not requested.
include_logprobs = sampling_params.logprobs is not None
text_buffer_length = sampling_params.output_text_buffer_length
delta = sampling_params.output_kind == RequestOutputKind.DELTA
outputs = []
include_prompt = True
# num_cached_tokens should be the same for all the sequences
num_cached_tokens = None
for i, seq in enumerate(top_n_seqs):
output_text = seq.get_output_text_to_return(
text_buffer_length, delta)
output_token_ids = seq.get_output_token_ids_to_return(delta)
num_output_tokens = 1 if isinstance(output_token_ids,
int) else len(output_token_ids)
num_cached_tokens = seq.data.get_num_cached_tokens()
output_logprobs = seq.output_logprobs if include_logprobs else None
if delta:
# Slice logprobs delta if applicable
if output_logprobs:
# num_output_tokens can be 0 when n > 1 and request finishes
# before the others
if num_output_tokens > 0:
output_logprobs = output_logprobs[-num_output_tokens:]
else:
output_logprobs = None
# Don't include prompt if this is after the first output
# containing decode token ids
if include_prompt and seq.get_output_len() > num_output_tokens:
include_prompt = False
if use_cache:
# Get cached output object
cached_outputs = seq_group.cached_request_output.outputs # type: ignore
if i >= len(cached_outputs):
cached_outputs.append(
CompletionOutput(index=i,
text="",
token_ids=[],
cumulative_logprob=None,
logprobs=None,
finish_reason=None,
stop_reason=None))
output = cached_outputs[i]
# Init cached output object
assert output.index == i
output.text = output_text
if isinstance(output_token_ids, int):
output.token_ids.clear()
output.token_ids.append(output_token_ids)
else:
output.token_ids = output_token_ids
output.cumulative_logprob = seq.get_cumulative_logprob() \
if include_logprobs else None
output.logprobs = output_logprobs
output.finish_reason = SequenceStatus.get_finished_reason(
seq.status)
output.stop_reason = seq.stop_reason
else:
output = CompletionOutput(
top_n_seqs.index(seq), output_text, [output_token_ids]
if isinstance(output_token_ids, int) else output_token_ids,
seq.get_cumulative_logprob() if include_logprobs else None,
output_logprobs,
SequenceStatus.get_finished_reason(seq.status),
seq.stop_reason)
outputs.append(output)
# Every sequence in the sequence group should have the same prompt.
if include_prompt:
prompt = seq_group.prompt
prompt_token_ids = seq_group.prompt_token_ids
encoder_prompt = seq_group.encoder_prompt
encoder_prompt_token_ids = seq_group.encoder_prompt_token_ids
prompt_logprobs = seq_group.prompt_logprobs
else:
prompt = None
prompt_token_ids = None
encoder_prompt = None
encoder_prompt_token_ids = None
prompt_logprobs = None
finished_time = time.time() if finished else None
seq_group.set_finished_time(finished_time)
init_kwargs = {
"request_id": seq_group.request_id,
"prompt": prompt,
"prompt_token_ids": prompt_token_ids,
"prompt_logprobs": prompt_logprobs,
"outputs": outputs,
"finished": finished,
"metrics": seq_group.metrics,
"lora_request": seq_group.lora_request,
"encoder_prompt": encoder_prompt,
"encoder_prompt_token_ids": encoder_prompt_token_ids,
"num_cached_tokens": num_cached_tokens,
"multi_modal_placeholders": seq_group.multi_modal_placeholders
}
if use_cache:
request_output = seq_group.cached_request_output
request_output.__init__(**init_kwargs) # type: ignore
else:
request_output = cls(**init_kwargs) # type: ignore
return request_output
def __repr__(self) -> str:
return (f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"encoder_prompt={self.encoder_prompt!r}, "
f"encoder_prompt_token_ids={self.encoder_prompt_token_ids}, "
f"prompt_logprobs={self.prompt_logprobs}, "
f"outputs={self.outputs}, "
f"finished={self.finished}, "
f"metrics={self.metrics}, "
f"lora_request={self.lora_request}, "
f"num_cached_tokens={self.num_cached_tokens}, "
f"multi_modal_placeholders={self.multi_modal_placeholders})")
_O = TypeVar("_O", default=PoolingOutput)
class PoolingRequestOutput(Generic[_O]):
"""
The output data of a pooling request to the LLM.
Args:
request_id (str): A unique identifier for the pooling request.
outputs (PoolingOutput): The pooling results for the given input.
prompt_token_ids (list[int]): A list of token IDs used in the prompt.
finished (bool): A flag indicating whether the pooling is completed.
"""
def __init__(self, request_id: str, outputs: _O,
prompt_token_ids: list[int], finished: bool):
self.request_id = request_id
self.prompt_token_ids = prompt_token_ids
self.finished = finished
self.outputs = outputs
@staticmethod
def from_seq_group(seq_group: SequenceGroup) -> "PoolingRequestOutput":
pooled_data = seq_group.pooled_data
assert pooled_data is not None
data = pooled_data.to(dtype=torch.float32, device="cpu")
output = PoolingOutput(data)
prompt_token_ids = seq_group.prompt_token_ids
finished = seq_group.is_finished()
return PoolingRequestOutput(seq_group.request_id, output,
prompt_token_ids, finished)
def __repr__(self):
return (f"{type(self).__name__}(request_id={self.request_id!r}, "
f"outputs={self.outputs!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"finished={self.finished})")
class RequestOutputFactory:
@staticmethod
def create(seq_group: SequenceGroup,
seq_id_to_seq_group: dict[str, SequenceGroupBase],
use_cache: bool = False):
if seq_group.pooled_data is not None:
return PoolingRequestOutput.from_seq_group(seq_group)
else:
return RequestOutput.from_seq_group(seq_group, use_cache,
seq_id_to_seq_group)
@dataclass
class EmbeddingOutput:
"""The output data of one embedding output of a request.
Args:
embedding: The embedding vector, which is a list of floats.
Its length depends on the hidden dimension of the model.
"""
embedding: list[float]
@staticmethod
def from_base(pooling_output: PoolingOutput):
pooled_data = pooling_output.data
if pooled_data.ndim != 1:
raise ValueError("pooled_data should be a 1-D embedding vector")
return EmbeddingOutput(pooled_data.tolist())
@property
def hidden_size(self) -> int:
return len(self.embedding)
def __repr__(self) -> str:
return f"EmbeddingOutput(hidden_size={self.hidden_size})"
class EmbeddingRequestOutput(PoolingRequestOutput[EmbeddingOutput]):
@staticmethod
def from_base(request_output: PoolingRequestOutput):
return EmbeddingRequestOutput(
request_id=request_output.request_id,
outputs=EmbeddingOutput.from_base(request_output.outputs),
prompt_token_ids=request_output.prompt_token_ids,
finished=request_output.finished,
)
@dataclass
class ClassificationOutput:
"""The output data of one classification output of a request.
Args:
probs: The probability vector, which is a list of floats.
Its length depends on the number of classes.
"""
probs: list[float]
@staticmethod
def from_base(pooling_output: PoolingOutput):
pooled_data = pooling_output.data
if pooled_data.ndim != 1:
raise ValueError("pooled_data should be a 1-D probability vector")
return ClassificationOutput(pooled_data.tolist())
@property
def num_classes(self) -> int:
return len(self.probs)
def __repr__(self) -> str:
return f"ClassificationOutput(num_classes={self.num_classes})"
class ClassificationRequestOutput(PoolingRequestOutput[ClassificationOutput]):
@staticmethod
def from_base(request_output: PoolingRequestOutput):
return ClassificationRequestOutput(
request_id=request_output.request_id,
outputs=ClassificationOutput.from_base(request_output.outputs),
prompt_token_ids=request_output.prompt_token_ids,
finished=request_output.finished,
)
@dataclass
class ScoringOutput:
"""The output data of one scoring output of a request.
Args:
score: The similarity score, which is a scalar value.
"""
score: float
@staticmethod
def from_base(pooling_output: PoolingOutput):
pooled_data = pooling_output.data
if pooled_data.ndim != 0:
raise ValueError("pooled_data should be a scalar score")
return ScoringOutput(pooled_data.item())
def __repr__(self) -> str:
return f"ScoringOutput(score={self.score})"
class ScoringRequestOutput(PoolingRequestOutput[ScoringOutput]):
@staticmethod
def from_base(request_output: PoolingRequestOutput):
return ScoringRequestOutput(
request_id=request_output.request_id,
outputs=ScoringOutput.from_base(request_output.outputs),
prompt_token_ids=request_output.prompt_token_ids,
finished=request_output.finished,
)