mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-27 17:01:52 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
360 lines
14 KiB
Python
360 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2023 CTranslate2, and Michael Feil
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only GPTBigCode model compatible with HuggingFace weights."""
|
|
from typing import Iterable, List, Optional, Set, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import GPTBigCodeConfig
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsLoRA, SupportsPP
|
|
from .utils import (is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers)
|
|
|
|
|
|
class GPTBigCodeAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPTBigCodeConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
total_num_heads = config.num_attention_heads
|
|
self.tensor_model_parallel_world_size = (
|
|
get_tensor_model_parallel_world_size())
|
|
assert total_num_heads % self.tensor_model_parallel_world_size == 0
|
|
self.num_heads = (total_num_heads //
|
|
self.tensor_model_parallel_world_size)
|
|
self.head_dim = self.hidden_size // total_num_heads
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.multi_query = config.multi_query
|
|
if self.multi_query:
|
|
total_num_kv_heads = 1
|
|
self.num_kv_heads = 1
|
|
else:
|
|
total_num_kv_heads = total_num_heads
|
|
self.num_kv_heads = self.num_heads
|
|
self.kv_dim = self.head_dim * self.num_kv_heads
|
|
self.c_attn = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
total_num_heads,
|
|
total_num_kv_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
self.c_proj = RowParallelLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
scale=self.scale,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.split(
|
|
[
|
|
self.hidden_size // self.tensor_model_parallel_world_size,
|
|
self.kv_dim, self.kv_dim
|
|
],
|
|
dim=-1,
|
|
)
|
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
attn_output, _ = self.c_proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class GPTBigMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
intermediate_size: int,
|
|
config: GPTBigCodeConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
self.c_fc = ColumnParallelLinear(
|
|
hidden_size,
|
|
intermediate_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
self.act = get_act_fn(config.activation_function)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.c_fc(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states, _ = self.c_proj(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GPTBigCodeBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GPTBigCodeConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
inner_dim = (config.n_inner if config.n_inner is not None else 4 *
|
|
hidden_size)
|
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.attn = GPTBigCodeAttention(config,
|
|
cache_config,
|
|
quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.mlp = GPTBigMLP(inner_dim, config, quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_output = self.attn(
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
# residual connection
|
|
hidden_states = attn_output + residual
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.ln_2(hidden_states)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
# residual connection
|
|
hidden_states = residual + feed_forward_hidden_states
|
|
return hidden_states
|
|
|
|
|
|
@support_torch_compile
|
|
class GPTBigCodeModel(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
|
|
self.config = config
|
|
assert not config.add_cross_attention
|
|
|
|
self.embed_dim = config.hidden_size
|
|
lora_vocab = (lora_config.lora_extra_vocab_size *
|
|
(lora_config.max_loras or 1)) if lora_config else 0
|
|
self.vocab_size = config.vocab_size + lora_vocab
|
|
self.wte = VocabParallelEmbedding(self.vocab_size,
|
|
self.embed_dim,
|
|
org_num_embeddings=config.vocab_size)
|
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
|
self.start_layer, self.end_layer, self.h = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: GPTBigCodeBlock(
|
|
config, cache_config, quant_config, prefix=prefix),
|
|
prefix=f"{prefix}.h",
|
|
)
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(["hidden_states"],
|
|
config.n_embd))
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.wte(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.get_input_embeddings(input_ids)
|
|
hidden_states = inputs_embeds + self.wpe(position_ids)
|
|
else:
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
|
|
for i in range(self.start_layer, self.end_layer):
|
|
layer = self.h[i]
|
|
hidden_states = layer(hidden_states,
|
|
kv_caches[i - self.start_layer],
|
|
attn_metadata)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GPTBigCodeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
|
packed_modules_mapping = {"c_attn": ["c_attn"]}
|
|
|
|
supported_lora_modules = ["c_fc", "c_proj", "wte", "c_attn"]
|
|
|
|
embedding_modules = {
|
|
"wte": "input_embeddings",
|
|
"lm_head": "output_embeddings",
|
|
}
|
|
|
|
embedding_padding_modules = []
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
|
|
self.config = config
|
|
self.lora_config = lora_config
|
|
|
|
self.quant_config = quant_config
|
|
self.transformer = GPTBigCodeModel(vllm_config=vllm_config,
|
|
prefix=prefix)
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head = self.transformer.wte
|
|
else:
|
|
self.lm_head = ParallelLMHead(
|
|
self.transformer.vocab_size,
|
|
self.transformer.embed_dim,
|
|
org_num_embeddings=self.config.vocab_size)
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
if lora_config:
|
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
|
config.vocab_size)
|
|
self.sampler = get_sampler()
|
|
self.make_empty_intermediate_tensors = (
|
|
self.transformer.make_empty_intermediate_tensors)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.transformer.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
|
attn_metadata, intermediate_tensors,
|
|
inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: Set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "lm_head.weight" in name:
|
|
continue
|
|
if ".attn.bias" in name:
|
|
# Skip attention mask.
|
|
# NOTE: "c_attn.bias" should not be skipped.
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
# TODO (@robertgshaw2-neuralmagic): move to fp8 linear method
|
|
if "c_attn.input_scale" in name or "c_attn.weight_scale" in name:
|
|
weight_loader(param, loaded_weight, 'q')
|
|
weight_loader(param, loaded_weight, 'k')
|
|
weight_loader(param, loaded_weight, 'v')
|
|
else:
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|