youkaichao 458e63a2c6
[platform] add device_control env var (#12009)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-01-13 20:59:09 +08:00

97 lines
3.6 KiB
Python

from typing import TYPE_CHECKING, Optional
import torch
from vllm.logger import init_logger
from .interface import DeviceCapability, Platform, PlatformEnum, _Backend
if TYPE_CHECKING:
from vllm.config import VllmConfig
else:
VllmConfig = None
logger = init_logger(__name__)
class XPUPlatform(Platform):
_enum = PlatformEnum.XPU
device_name: str = "xpu"
device_type: str = "xpu"
dispatch_key: str = "XPU"
# Intel XPU's device key is "GPU" for Ray.
# see https://github.com/ray-project/ray/blob/6a5eb5865eeb9ccf058a79b44f107e327e360673/python/ray/_private/accelerators/intel_gpu.py#L20 # noqa: E501
ray_device_key: str = "GPU"
device_control_env_var: str = "ONEAPI_DEVICE_SELECTOR"
@classmethod
def get_attn_backend_cls(cls, selected_backend: _Backend, head_size: int,
dtype: torch.dtype, kv_cache_dtype: Optional[str],
block_size: int, use_v1: bool) -> str:
if selected_backend != _Backend.IPEX:
logger.info("Cannot use %s backend on XPU.", selected_backend)
logger.info("Using IPEX attention backend.")
return "vllm.attention.backends.ipex_attn.IpexAttnBackend"
@staticmethod
def get_device_capability(device_id: int = 0) -> DeviceCapability:
major, minor, *_ = torch.xpu.get_device_capability(
device_id)['version'].split('.')
return DeviceCapability(major=int(major), minor=int(minor))
@staticmethod
def get_device_name(device_id: int = 0) -> str:
return torch.xpu.get_device_name(device_id)
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
device_props = torch.xpu.get_device_properties(device_id)
return device_props.total_memory
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
return True
@staticmethod
def inference_mode():
return torch.no_grad()
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
cache_config = vllm_config.cache_config
if cache_config and cache_config.block_size is None:
cache_config.block_size = 16
# check and update model config
model_config = vllm_config.model_config
if model_config.dtype == torch.bfloat16:
logger.warning(
"bfloat16 is not fully supported on XPU, casting to float16.")
model_config.dtype = torch.float16
if not model_config.enforce_eager:
logger.warning(
"CUDA graph is not supported on XPU, fallback to the eager "
"mode.")
model_config.enforce_eager = True
if vllm_config.speculative_config is not None:
raise NotImplementedError(
"XPU does not support speculative decoding")
# check and update parallel config
parallel_config = vllm_config.parallel_config
if (parallel_config.distributed_executor_backend is not None
and parallel_config.distributed_executor_backend != "ray"):
logger.warning(
"%s is not supported on XPU, fallback to ray distributed"
" executor backend.",
parallel_config.distributed_executor_backend)
parallel_config.distributed_executor_backend = "ray"
if parallel_config.worker_cls == "auto":
parallel_config.worker_cls = "vllm.worker.xpu_worker.XPUWorker"
@classmethod
def is_pin_memory_available(cls):
logger.warning("Pin memory is not supported on XPU.")
return False