mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 05:55:01 +08:00
165 lines
5.6 KiB
Python
165 lines
5.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import enum
|
|
from typing import TYPE_CHECKING, List, Optional, Union
|
|
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.v1.engine import (EngineCoreEvent, EngineCoreEventType,
|
|
EngineCoreRequest, FinishReason)
|
|
from vllm.v1.utils import ConstantList
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.multimodal import MultiModalKwargs
|
|
from vllm.multimodal.inputs import PlaceholderRange
|
|
|
|
|
|
class Request:
|
|
|
|
def __init__(
|
|
self,
|
|
request_id: str,
|
|
prompt: Optional[str],
|
|
prompt_token_ids: List[int],
|
|
multi_modal_inputs: Optional[List["MultiModalKwargs"]],
|
|
multi_modal_hashes: Optional[List[str]],
|
|
multi_modal_placeholders: Optional[List["PlaceholderRange"]],
|
|
sampling_params: SamplingParams,
|
|
eos_token_id: Optional[int],
|
|
arrival_time: float,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
) -> None:
|
|
self.request_id = request_id
|
|
self.sampling_params = sampling_params
|
|
# Because of LoRA, the eos token id can be different for each request.
|
|
self.eos_token_id = eos_token_id
|
|
self.lora_request = lora_request
|
|
|
|
self.status = RequestStatus.WAITING
|
|
self.events: List[EngineCoreEvent] = []
|
|
self.stop_reason: Union[int, str, None] = None
|
|
assert sampling_params.max_tokens is not None
|
|
self.max_tokens = sampling_params.max_tokens
|
|
|
|
self.prompt = prompt
|
|
self.prompt_token_ids = prompt_token_ids
|
|
self.num_prompt_tokens = len(self.prompt_token_ids)
|
|
self._output_token_ids: List[int] = []
|
|
self._all_token_ids: List[int] = self.prompt_token_ids.copy()
|
|
self.num_computed_tokens = 0
|
|
|
|
# Multi-modal related
|
|
self.mm_positions = multi_modal_placeholders or []
|
|
self.mm_inputs = multi_modal_inputs or []
|
|
self.mm_hashes: List[str] = multi_modal_hashes or []
|
|
|
|
# Sanity check
|
|
assert len(self.mm_inputs) == len(self.mm_positions)
|
|
if self.mm_hashes:
|
|
assert len(self.mm_inputs) == len(self.mm_hashes)
|
|
|
|
# Read-only views
|
|
# Prevent directly appending to the these lists since
|
|
# they should also be updated simultaneously.
|
|
self.output_token_ids = ConstantList(self._output_token_ids)
|
|
self.all_token_ids = ConstantList(self._all_token_ids)
|
|
|
|
@classmethod
|
|
def from_engine_core_request(cls, request: EngineCoreRequest) -> "Request":
|
|
return cls(
|
|
request_id=request.request_id,
|
|
prompt=request.prompt,
|
|
prompt_token_ids=request.prompt_token_ids,
|
|
multi_modal_inputs=request.mm_inputs,
|
|
multi_modal_hashes=request.mm_hashes,
|
|
multi_modal_placeholders=request.mm_placeholders,
|
|
sampling_params=request.sampling_params,
|
|
eos_token_id=request.eos_token_id,
|
|
arrival_time=request.arrival_time,
|
|
lora_request=request.lora_request,
|
|
)
|
|
|
|
def queued(self, timestamp: Optional[float] = None) -> None:
|
|
self.events.append(
|
|
EngineCoreEvent.new_event(EngineCoreEventType.QUEUED, timestamp))
|
|
|
|
def scheduled(self, timestamp: Optional[float] = None) -> None:
|
|
self.events.append(
|
|
EngineCoreEvent.new_event(EngineCoreEventType.SCHEDULED,
|
|
timestamp))
|
|
|
|
def take_events(self) -> Optional[List[EngineCoreEvent]]:
|
|
if not self.events:
|
|
return None
|
|
events, self.events = self.events, []
|
|
return events
|
|
|
|
def append_output_token_ids(
|
|
self,
|
|
token_ids: Union[int, List[int]],
|
|
) -> None:
|
|
if isinstance(token_ids, int):
|
|
token_ids = [token_ids]
|
|
self._output_token_ids.extend(token_ids)
|
|
self._all_token_ids.extend(token_ids)
|
|
|
|
@property
|
|
def num_tokens(self) -> int:
|
|
return len(self._all_token_ids)
|
|
|
|
@property
|
|
def num_output_tokens(self) -> int:
|
|
return len(self._output_token_ids)
|
|
|
|
def is_finished(self) -> bool:
|
|
return RequestStatus.is_finished(self.status)
|
|
|
|
def get_finished_reason(self) -> Union[FinishReason, None]:
|
|
return RequestStatus.get_finished_reason(self.status)
|
|
|
|
def has_encoder_inputs(self) -> bool:
|
|
return len(self.mm_inputs) > 0
|
|
|
|
@property
|
|
def num_encoder_inputs(self) -> int:
|
|
return len(self.mm_positions)
|
|
|
|
def get_num_encoder_tokens(self, input_id: int) -> int:
|
|
assert input_id < len(self.mm_positions)
|
|
num_tokens = self.mm_positions[input_id]["length"]
|
|
return num_tokens
|
|
|
|
|
|
class RequestStatus(enum.IntEnum):
|
|
"""Status of a request."""
|
|
WAITING = 0
|
|
RUNNING = 1
|
|
PREEMPTED = 2
|
|
# Note: anything after PREEMPTED (2) will be considered
|
|
# as a finished status.
|
|
FINISHED_STOPPED = 3
|
|
FINISHED_LENGTH_CAPPED = 4
|
|
FINISHED_ABORTED = 5
|
|
FINISHED_IGNORED = 6
|
|
|
|
@staticmethod
|
|
def is_finished(status: "RequestStatus") -> bool:
|
|
return status > RequestStatus.PREEMPTED
|
|
|
|
@staticmethod
|
|
def get_finished_reason(
|
|
status: "RequestStatus") -> Union[FinishReason, None]:
|
|
return _FINISHED_REASON_MAP.get(status)
|
|
|
|
|
|
# Mapping of finished statuses to their finish reasons.
|
|
# NOTE: The ignored requests are the requests whose prompt lengths
|
|
# are longer than the model's length cap. Therefore, the stop
|
|
# reason should also be "length" as in OpenAI API.
|
|
_FINISHED_REASON_MAP = {
|
|
RequestStatus.FINISHED_STOPPED: FinishReason.STOP,
|
|
RequestStatus.FINISHED_LENGTH_CAPPED: FinishReason.LENGTH,
|
|
RequestStatus.FINISHED_ABORTED: FinishReason.ABORT,
|
|
RequestStatus.FINISHED_IGNORED: FinishReason.LENGTH,
|
|
}
|