mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 11:30:46 +08:00
91 lines
3.4 KiB
Python
91 lines
3.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Test whether spec decoding handles the max model length properly."""
|
|
|
|
import pytest
|
|
|
|
from tests.utils import get_attn_backend_list_based_on_platform
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.platforms import current_platform
|
|
from vllm.sampling_params import StructuredOutputsParams
|
|
|
|
_PROMPTS = [
|
|
"1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
|
|
"Repeat the following sentence 10 times: Consistency is key to mastering any skill.", # noqa: E501
|
|
"Who won the Turing Award in 2018, and for what contribution? Describe in detail.", # noqa: E501
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("num_speculative_tokens", [1, 3, 10])
|
|
def test_ngram_max_len(num_speculative_tokens: int):
|
|
llm = LLM(
|
|
model="facebook/opt-125m",
|
|
max_model_len=100,
|
|
enforce_eager=True, # For faster initialization.
|
|
speculative_config={
|
|
"method": "ngram",
|
|
"prompt_lookup_max": 5,
|
|
"prompt_lookup_min": 3,
|
|
"num_speculative_tokens": num_speculative_tokens,
|
|
},
|
|
)
|
|
sampling_params = SamplingParams(max_tokens=100, ignore_eos=True)
|
|
llm.generate(_PROMPTS, sampling_params)
|
|
|
|
|
|
@pytest.mark.parametrize("num_speculative_tokens", [1, 3, 10])
|
|
@pytest.mark.parametrize("attn_backend", get_attn_backend_list_based_on_platform())
|
|
def test_eagle_max_len(
|
|
monkeypatch: pytest.MonkeyPatch, num_speculative_tokens: int, attn_backend: str
|
|
):
|
|
with monkeypatch.context() as m:
|
|
m.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
|
|
|
|
if attn_backend == "TRITON_ATTN" and not current_platform.is_rocm():
|
|
pytest.skip(
|
|
"TRITON_ATTN does not support "
|
|
"multi-token eagle spec decode on current platform"
|
|
)
|
|
|
|
if attn_backend == "FLASH_ATTN" and current_platform.is_rocm():
|
|
m.setenv("VLLM_ROCM_USE_AITER", "1")
|
|
|
|
llm = LLM(
|
|
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
|
enforce_eager=True, # For faster initialization.
|
|
speculative_config={
|
|
"method": "eagle",
|
|
"model": "yuhuili/EAGLE-LLaMA3-Instruct-8B",
|
|
"num_speculative_tokens": num_speculative_tokens,
|
|
"max_model_len": 80,
|
|
},
|
|
max_model_len=200,
|
|
)
|
|
sampling_params = SamplingParams(max_tokens=200, ignore_eos=True)
|
|
outputs = llm.generate(_PROMPTS, sampling_params)
|
|
for o in outputs:
|
|
assert o.outputs[0].finish_reason == "length", (
|
|
"This test is only meaningful if the output "
|
|
"is truncated due to max length"
|
|
)
|
|
|
|
sampling_params = SamplingParams(
|
|
max_tokens=200,
|
|
structured_outputs=StructuredOutputsParams(
|
|
regex="^" + "a b c d e " * 15 + "$"
|
|
),
|
|
)
|
|
output = llm.generate(_PROMPTS, sampling_params)
|
|
for o in output:
|
|
assert o.prompt_token_ids is not None
|
|
assert (
|
|
len(o.prompt_token_ids)
|
|
< 80
|
|
< len(o.prompt_token_ids) + len(o.outputs[0].token_ids)
|
|
< 200
|
|
), (
|
|
"This test is only meaningful if the output "
|
|
"is longer than the eagle max length"
|
|
)
|
|
assert o.outputs[0].text == "a b c d e " * 15
|